留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核壳型MOFs@离子液体复合材料的制备及其常压下催化CO2环加成反应性能探究

胡凤群 邱明月 易群 张鼎 李向远 李剑川 史利娟 段小川

胡凤群, 邱明月, 易群, 张鼎, 李向远, 李剑川, 史利娟, 段小川. 核壳型MOFs@离子液体复合材料的制备及其常压下催化CO2环加成反应性能探究[J]. 燃料化学学报(中英文), 2023, 51(11): 1673-1682. doi: 10.19906/j.cnki.JFCT.2023028
引用本文: 胡凤群, 邱明月, 易群, 张鼎, 李向远, 李剑川, 史利娟, 段小川. 核壳型MOFs@离子液体复合材料的制备及其常压下催化CO2环加成反应性能探究[J]. 燃料化学学报(中英文), 2023, 51(11): 1673-1682. doi: 10.19906/j.cnki.JFCT.2023028
HU Feng-qun, QIU Ming-yue, YI Qun, ZHANG Ding, LI Xiang-yuan, LI Jian-chuan, SHI Li-juan, DUAN Xiao-chuan. Construction of core-shell MOFs@ionic liquid materials and their performance for CO2 cycloaddition reaction under atmospheric pressure[J]. Journal of Fuel Chemistry and Technology, 2023, 51(11): 1673-1682. doi: 10.19906/j.cnki.JFCT.2023028
Citation: HU Feng-qun, QIU Ming-yue, YI Qun, ZHANG Ding, LI Xiang-yuan, LI Jian-chuan, SHI Li-juan, DUAN Xiao-chuan. Construction of core-shell MOFs@ionic liquid materials and their performance for CO2 cycloaddition reaction under atmospheric pressure[J]. Journal of Fuel Chemistry and Technology, 2023, 51(11): 1673-1682. doi: 10.19906/j.cnki.JFCT.2023028

核壳型MOFs@离子液体复合材料的制备及其常压下催化CO2环加成反应性能探究

doi: 10.19906/j.cnki.JFCT.2023028
基金项目: 国家自然科学基金面上基金 (22272125),榆林学院中国科学院洁净能源创新研究院联合基金(YLU-DNL Fund 2021021),武汉市科技局知识创新专项基础研究项目(2022020801010354)和山西浙大新材料与化工研究院项目(2022SXTD015)资助
详细信息
    通讯作者:

    Tel: 15364834561, 15959459816, E-mail: shilijuanwit@sina.com

    duanxiaochuan@tyut.edu.cn

  • 中图分类号: O643.3

Construction of core-shell MOFs@ionic liquid materials and their performance for CO2 cycloaddition reaction under atmospheric pressure

Funds: The project was supported by the National Natural Science Foundation of China (22272125), the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2021021), the Knowledge Innovation Program of Wuhan -Basic Research (2022020801010354) and Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (2022SXTD015)
  • 摘要: 通过双氨基功能化离子液体与对苯二甲醛原位共价组装得到柔性聚合物(DP),并采用后合成修饰法将DP包覆于金属有机框架材料MIL-101(Cr)表面,构筑了一种核-壳型复合材料(MIL-101@DP)用于催化CO2和环氧氯丙烷(ECH)环加成反应。MIL-101@DP保留了MIL-101(Cr)高比表面积和高孔隙率的优点,并兼具亲核位点Cl与Lewis酸性位点Cr3 + 。在Lewis酸碱位点协同作用下,MIL-101@DP可在常压、80 ℃、24 h且无助催化剂的条件下高效催化转化CO2和ECH反应(ECH转化率可达99%),且在循环使用四次后活性未出现明显下降。
  • FIG. 2766.  FIG. 2766.

    FIG. 2766.  FIG. 2766.

    图  1  1.4-丁基二咪唑反应方程式

    Figure  1  Reaction formula for the synthesis of 1,4-bis (imidazol-1-yl) butane

    图  2  离子液体DAIL的反应方程式

    Figure  2  Reaction formula for the synthesis of inion liquid DAIL

    图  3  聚合物DP反应方程式

    Figure  3  Reaction formula for the synthesis of polymer DP

    图  4  ECH和CO2环加成反应

    Figure  4  The cycloaddition of ECH and CO2

    图  5  (a)TPA、DAIL、DP的红外光谱谱图;(b)MIL-101、MIL-101-DAIL、MIL-101@DP-X的红外光谱谱图

    Figure  5  (a) FT-IR spectra of TPA, DAIL and DP; (b) FT-IR spectra of MIL-101, MIL-101-DAIL and MIL-101@DP-X

    图  6  MIL-101、MIL-101-DAIL、MIL-101@DP-X的XRD谱图

    Figure  6  Powder XRD patterns of MIL-101, MIL-101-DAIL and MIL-101@DP-X

    图  7  N2吸附-脱附等温曲线(a)和孔径分布(b)

    Figure  7  (a) N2 adsorption-desorption isotherms and (b) pore diameter distributions

    图  8  (a)、(b)MIL-101的SEM照片;(c)、(d)MIL-101@DP-2的SEM照片

    Figure  8  SEM images spectra of (a), (b) MIL-101, and (c), (d) MIL-101@DP-2

    图  9  MIL-101、MIL-101-DAIL、MIL-101@DP-X的DTG曲线(a)和TGA曲线(b)

    Figure  9  DTG (a) and TGA (b) curves of MIL-101, MIL-101-DAIL and MIL-101@DP-X

    图  10  MIL-101、MIL-101-DAIL、MIL-101@DP-X在0.1 MPa、50 ℃、24 h下的催化性能

    Figure  10  Catalytic performance of MIL-101, MIL-101-DAIL and MIL-101@DP-X at 0.1 MPa, 50 ℃ for 24 h

    图  11  MIL-101@DP-2在0.1 MPa、24 h、不同温度下的催化性能

    Figure  11  Catalytic performance of MIL-101@DP-2 at 0.1 MPa, 24 h and different temperatures

    图  12  MIL-101@DP-2在0.1 MPa、80 ℃、24 h下的循环使用性能

    Figure  12  Cyclic performance of the MIL-101@DP-2 at 0.1 MPa, 80 ℃ for 24 h

    图  13  MIL-101@DP-2新鲜和回收后的(a)N2吸附-脱附等温曲线,(b)孔径分布,(c)FT-IR谱图 ,(d)XRD 谱图

    Figure  13  (a) N2 adsorption-desorption isotherms, (b) pore diameter distributions, (c) FT-IR spectra and (d) XRD patterns of fresh and recycled MIL-101@DP-2

    图  14  MIL-101@DP催化机理示意图

    Figure  14  Proposed catalytic reaction mechanism of MIL-101@DP

    表  1  MIL-101、MIL-101-DAIL、MIL-101@DP-X的比表面积和孔容

    Table  1  Specific surface areas and pore volumes of MIL-101, MIL-101-DAIL and MIL-101@DP-X

    SBET /(m2·g−1)vtotal /(cm3·g−1)
    MIL-10117661.07
    MIL-101-DAIL9680.67
    MIL-101@DP-116181.03
    MIL-101@DP-216521.02
    下载: 导出CSV

    表  2  MIL-101@DP-2催化CO2与各种环氧化合物合成碳酸盐

    Table  2  Synthetic carbonates from various epoxides catalyzed by MIL-101@DP-2

    EntrySubstrateProductTemperature /℃p /MPaConversion /%
    1800.199
    2800.199
    3800.159
    4800.129
    下载: 导出CSV
  • [1] KURUPPATHPARAMBIL R R, JOSE T, BABU R, HWANG G Y, KATHALIKKATTIL A C, KIM D W, PARK D W. A room temperature synthesizable and environmental friendly heterogeneous ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of cyclic carbonates[J]. Appl Catal B: Environ,2016,182:562−569. doi: 10.1016/j.apcatb.2015.10.005
    [2] ]WU Y, SONG X, XU S, CHEN Y, ODERINDE O, GAO L, WEI R, XIAO G. Chemical fixation of CO2 into cyclic carbonates catalyzed by bimetal mixed MOFs: the role of the interaction between Co and Zn[J]. Dalton Trans,2020,49(2):312−321. doi: 10.1039/C9DT04027G
    [3] LIU M, WANG X, JIANG Y, SUN J, ARAI M. Hydrogen bond activation strategy for cyclic carbonates synthesis from epoxides and CO2: Current state-of-the art of catalyst development and reaction analysis[J]. Catal Rev,2018,61(2):214−269.
    [4] ZHANG Z, FAN F, XING H, YANG Q, BAO Z, REN Q. Efficient synthesis of cyclic carbonates from atmospheric CO2 using a positive charge delocalized ionic liquid catalyst[J]. ACS Sustainable Chem Eng,2017,5(4):2841−2846. doi: 10.1021/acssuschemeng.7b00513
    [5] HAZRA CHOWDHURY I, HAZRA CHOWDHURY A, SARKAR P, ISLAM S M. Chemical fixation of carbon dioxide by heterogeneous porous catalysts[J]. ChemNanoMat,2021,7(6):580−591. doi: 10.1002/cnma.202100074
    [6] BAO C, JIANG Y, ZHAO L, LI D, XU P, SUN J. Aminoethylimidazole ionic liquid-grafted MIL-101-NH2 heterogeneous catalyst for the conversion of CO2 and epoxide without solvent and cocatalyst[J]. New J Chem,2021,45(31):13893−13901. doi: 10.1039/D1NJ02590B
    [7] LI Z J, SUN J F, XU Q Q, YIN J Z. Homogeneous and heterogeneous ionic liquid system: Promising “ideal catalysts” for the fixation of CO2 into cyclic carbonates[J]. ChemCatChem,2021,13(8):1848−1866. doi: 10.1002/cctc.202001572
    [8] SINGH DHANKHAR S, UGALE B, NAGARAJA C M. Co-catalyst-free chemical fixation of CO2 into cyclic carbonates by using metal-organic frameworks as efficient heterogeneous catalysts[J]. Chem Asian J,2020,15(16):2403−2427. doi: 10.1002/asia.202000424
    [9] SUN Y, JIA X, HUANG H, GUO X, QIAO Z, ZHONG C. Solvent-free mechanochemical route for the construction of ionic liquid and mixed-metal MOF composites for synergistic CO2 fixation[J]. J Mater Chem A,2020,8(6):3180−3185. doi: 10.1039/C9TA10409G
    [10] BAHADORI M, MARANDI A, TANGESTANINEJAD S, MOGHADAM M, MIRKHANI V, MOHAMMADPOOR BALTORK I. Ionic liquid-decorated MIL-101(Cr) via covalent and coordination bonds for efficient solvent-free CO2 conversion and CO2 capture at low pressure[J]. J Phys Chem C,2020,124(16):8716−8725. doi: 10.1021/acs.jpcc.9b11668
    [11] XIANG W, SHEN C, LU Z, CHEN S, LI X, ZOU R, ZHANG Y, LIU C J. CO2 cycloaddition over ionic liquid immobilized hybrid zeolitic imidazolate frameworks: Effect of Lewis acid/base sites[J]. Chem Eng Sc,2021,233:116429. doi: 10.1016/j.ces.2020.116429
    [12] QU Y, ZHAO Y, LI D, SUN J. Task-specific ionic liquids for carbon dioxide absorption and conversion into value-added products[J]. Curr Opin Green Sustain Chem,2022,34:100599. doi: 10.1016/j.cogsc.2022.100599
    [13] LIU D, LI G, LIU H. Functionalized MIL-101 with imidazolium-based ionic liquids for the cycloaddition of CO2 and epoxides under mild condition[J]. Appl Surf Sc,2018,428:218−225. doi: 10.1016/j.apsusc.2017.09.040
    [14] LONG J, DAI W, ZOU M, LI B, ZHANG S, YANG L, MAO J, MAO P, LUO S, LUO X. Chemical conversion of CO2 into cyclic carbonates using a versatile and efficient all-in-one catalyst integrated with DABCO ionic liquid and MIL-101 (Cr)[J]. Microporous Mesoporous Mater,2021,318:111027. doi: 10.1016/j.micromeso.2021.111027
    [15] DAS S, PEREZ RAMIREZ J, GONG J, DEWANGAN N, HIDAJAT K, GATES B C, KAWI S. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2[J]. Chem Soc Rev,2020,49(10):2937−3004. doi: 10.1039/C9CS00713J
    [16] ZHANG Y, LIU L, XU W G, HAN Z B. MOF@POP core-shell architecture as synergetic catalyst for high-efficient CO2 fixation without cocatalyst under mild conditions[J]. J CO2 Util,2021,46:101463. doi: 10.1016/j.jcou.2021.101463
    [17] TSAI C Y, CHEN Y H, LEE S, LIN C H, CHANG C H, DAI W T, LIU W L. Uniform core-shell microspheres of SiO2@MOF for CO2 cycloaddition reactions[J]. Inorg Chem,2022,61(6):2724−2732. doi: 10.1021/acs.inorgchem.1c01570
    [18] ZHAO M, BAN Y, YANG W. Assembly of ionic liquid molecule layers on metal-organic framework-808 for CO2 capture[J]. Chem Eng J,2022,439:135650. doi: 10.1016/j.cej.2022.135650
    [19] SHI S, WU Y, ZHANG M, ZHANG Z, ODERINDE O, GAO L, XIAO G. Direct conversion of cellulose to levulinic acid using SO3H-functionalized ionic liquids containing halogen-anions[J]. J Mol Liq,2021,339:117278. doi: 10.1016/j.molliq.2021.117278
    [20] GUO Z, CAI X, XIE J, WANG X, ZHOU Y, WANG J. Hydroxyl-exchanged nanoporous ionic copolymer toward low-temperature cycloaddition of atmospheric carbon dioxide into carbonates[J]. ACS Appl Mater Interfaces,2016,8(20):12812−12821. doi: 10.1021/acsami.6b02461
    [21] HONG D Y, HWANG Y K, SERRE C, FéREY G, CHANG J S. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis[J]. Adv Funct Mater,2009,19(10):1537−1552. doi: 10.1002/adfm.200801130
    [22] OLANIYAN B, SAHA B. Comparison of catalytic activity of ZIF-8 and Zr/ZIF-8 for greener synthesis of chloromethyl ethylene carbonate by CO2 utilization[J]. Energies,2020,13(3):521. doi: 10.3390/en13030521
    [23] NGUYEN Q T, DO X H, CHO K Y, LEE Y R, BAEK K Y. Amine-functionalized bimetallic Co/Zn-zeolitic imidazolate frameworks as an efficient catalyst for the CO2 cycloaddition to epoxides under mild conditions[J]. J CO2 Util,2022,61:102061. doi: 10.1016/j.jcou.2022.102061
    [24] CHEN Y, ZHANG C, XIE J, LI H, DAI W, DENG Q, WANG S. Covalent organic frameworks as a sensing platform for water in organic solvent over a broad concentration range[J]. Anal Chem Acta,2020,1109:114−121. doi: 10.1016/j.aca.2020.03.003
    [25] JIANG Y, WANG Z, XU P, SUN J. Dicationic ionic liquid @MIL-101 for the cycloaddition of CO2 and epoxides under cocatalyst-free conditions[J]. Cryst Growth Des,2021,21(7):3689−3698. doi: 10.1021/acs.cgd.0c01666
    [26] RASTKARI N, AKBARI S, BRAHMAND M B, TAKHVAR A, AHMADKHANIHA R. Synthesis and characterization of tetraethylene pentamine functionalized MIL-101 (Cr) for removal of metals from water[J]. J Environ Health Sci Eng,2021,19(2):1735−1742. doi: 10.1007/s40201-021-00728-4
    [27] WANG Y, ZHANG Y, JIANG Z, JIANG G, ZHAO Z, WU Q, LIU Y, XU Q, DUAN A, XU C. Controlled fabrication and enhanced visible–light photocatalytic hydrogen production of Au@CdS/MIL-101 heterostructure[J]. Appl Catal B: Environ,2016,185:307−314. doi: 10.1016/j.apcatb.2015.12.020
    [28] THOMMES M, KANEKO K, NEIMARK A V, OLIVIER J P, RODRIGUEZ-REINOSO F, ROUQUEROL J, SING K S W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [J]. Pure Appl Chem, 2015, 87(9/10): 1051–1069.
    [29] ZIMPEL A, PREIß T, RÖDER R, ENGELKE H, INGRISCH M, PELLER M, RÄDLER J O, WAGNER E, BEIN T, LÄCHELT U, WUTTKE S. Imparting functionality to MOF nanoparticles by external surface selective covalent attachment of polymers[J]. Chem Mater,2016,28(10):3318−3326. doi: 10.1021/acs.chemmater.6b00180
    [30] VYAS V S, VISHWAKARMA M, MOUDRAKOVSKI I, HAASE F, SAVASCI G, OCHSENFELD C, SPATZ J P, LOTSCH B V. Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery[J]. Adv Mater,2016,28(39):8749−8754. doi: 10.1002/adma.201603006
    [31] SOGUKOMEROGULLARI H G, ZIREK A G, AYTAR E, KöSE M, SöNMEZ M. Pd, Ni, Fe and Cu complexes containing a novel SNS-pincer ligand bearing pyridine: Synthesis and catalytic application to form cyclic carbonates[J]. J Mol Struct,2022,1263:133074. doi: 10.1016/j.molstruc.2022.133074
    [32] BHIN K M, THARUN J, ROSHAN K R, KIM D W, CHUNG Y, PARK D W. Catalytic performance of zeolitic imidazolate framework ZIF-95 for the solventless synthesis of cyclic carbonates from CO2 and epoxides[J]. J CO2 Util,2017,17:112−118. doi: 10.1016/j.jcou.2016.12.001
    [33] FERREIRA A, FERREIRA C, TEIXEIRA J A, ROCHA F. Temperature and solid properties effects on gas–liquid mass transfer[J]. Chem. Eng. J,2010,162(2):743−752. doi: 10.1016/j.cej.2010.05.064
    [34] LIU C, LIU X H, LI B, ZHANG L, MA J G, CHENG P. Salen-Cu(II)@MIL-101 (Cr) as an efficient heterogeneous catalyst for cycloaddition of CO2 to epoxides under mild conditions[J]. J Energy Chem,2017,26(5):821−824. doi: 10.1016/j.jechem.2017.07.022
    [35] ZALOMAEVA O V, CHIBIRYAEV A M, KOVALENKO K A, KHOLDEEVA O A, BALZHINIMAEV B S, FEDIN V P. Cyclic carbonates synthesis from epoxides and CO2 over metal-organic framework Cr-MIL-101[J]. Chin J Catal,2013,298:179−185. doi: 10.1016/j.jcat.2012.11.029
    [36] CHEN Y, CHEN C, LI X, FENG N, WANG L, WAN H, GUAN G. Hydroxyl-ionic liquid functionalized metalloporphyrin as an efficient heterogeneous catalyst for cooperative cycloaddition of CO2 with epoxides[J]. J CO2 Util,2022,62:102107. doi: 10.1016/j.jcou.2022.102107
    [37] CHEN Y, XU P, ARAI M, SUN J. Cycloaddition of carbon dioxide to epoxides for the synthesis of cyclic carbonates with a mixed catalyst of layered double hydroxide and tetrabutylammonium bromide at ambient temperature[J]. Adv Synth Catal,2019,361(2):335−344. doi: 10.1002/adsc.201801223
    [38] JIANG Y, ZHAO Y, LIANG L, ZHANG X, SUN J. Imidazolium-based poly (ionic liquid) s@MIL-101 for CO2 adsorption and subsequent catalytic cycloaddition without additional cocatalyst and solvent[J]. New J Chem,2022,46(5):2309−2319. doi: 10.1039/D1NJ05358B
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  464
  • HTML全文浏览量:  194
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-17
  • 修回日期:  2023-03-29
  • 录用日期:  2023-04-03
  • 网络出版日期:  2023-04-13
  • 刊出日期:  2023-11-13

目录

    /

    返回文章
    返回