留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度-压力解耦对木质素水热过程中结构变化及解聚产物的影响

于士杰 赵鹏 刘茂清 高宇 李清海 张衍国 周会

于士杰, 赵鹏, 刘茂清, 高宇, 李清海, 张衍国, 周会. 温度-压力解耦对木质素水热过程中结构变化及解聚产物的影响[J]. 燃料化学学报(中英文), 2023, 51(8): 1106-1113. doi: 10.19906/j.cnki.JFCT.2023029
引用本文: 于士杰, 赵鹏, 刘茂清, 高宇, 李清海, 张衍国, 周会. 温度-压力解耦对木质素水热过程中结构变化及解聚产物的影响[J]. 燃料化学学报(中英文), 2023, 51(8): 1106-1113. doi: 10.19906/j.cnki.JFCT.2023029
YU Shi-jie, ZHAO Peng, LIU Mao-qing, GAO Yu, LI Qing-hai, ZHANG Yan-guo, ZHOU Hui. Effects of decoupled temperature and pressure on the hydrothermal process of lignin[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1106-1113. doi: 10.19906/j.cnki.JFCT.2023029
Citation: YU Shi-jie, ZHAO Peng, LIU Mao-qing, GAO Yu, LI Qing-hai, ZHANG Yan-guo, ZHOU Hui. Effects of decoupled temperature and pressure on the hydrothermal process of lignin[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1106-1113. doi: 10.19906/j.cnki.JFCT.2023029

温度-压力解耦对木质素水热过程中结构变化及解聚产物的影响

doi: 10.19906/j.cnki.JFCT.2023029
基金项目: 北京市自然科学基金(2222012),广东省重点研发计划(2020B1111380001),国家自然科学基金(52070116)和清华大学山西清洁能源研究院种子基金资助
详细信息
    通讯作者:

    Tel: 010-62783373, 010-62773188, E-mail: zhangyg@tsinghua.edu.cn

    huizhou@tsinghua.edu.cn

  • 中图分类号: TK6

Effects of decoupled temperature and pressure on the hydrothermal process of lignin

Funds: The project was support by the Beijing Municipal Natural Science Foundation (2222012), the Key-Area Research and Development Program of Guangdong Province (2020B1111380001), the National Natural Science Foundation of China (52070116), and the Tsinghua University-Shanxi Clean Energy Research Institute Innovation Project Seed Fund.
  • 摘要: 本工作研究了水热过程中解耦的温度和压力对木质素的影响,评估了水热处理对于木质素结构的影响,评估了解耦温度和压力对于木质素水热过程液相产物的影响。结果表明,木质素全部由松柏醇的G型单体组成,水热处理后,木质素中的β–O–4酯键等C–O键发生断裂,甲氧基以及和含氧结构相连的脂肪族结构转化为脂肪族碳骨架。液相产物最初为香草醛和3-(4-羟基-3-甲氧基苯基)-1-丙醇,后续主要通过单体间的转化以及木质素末端愈创木基单元的β–O–4键的裂解为愈创木酚。解耦的高压会抑制木质素液相产物的产生,并且会降低产物中异丁香酚的选择性。本研究结果有望为木质素的水热转化过程工况的优化提供更为基础的认识和理解。
  • FIG. 2576.  FIG. 2576.

    FIG. 2576.  FIG. 2576.

    图  1  木质素的氢结构解析

    Figure  1  Structural analysis of the hydrogen in lignin (a): three typical monomers of lignin; (b): 1H NMR spectrum of lignin dissolved in DMSO-d6

    图  2  木质素的碳结构解析

    Figure  2  Structural analysis of the carbon in lignin (a): the structure of coniferyl alcohol; (b): 13C NMR spectrum of lignin dissolved in DMSO-d6

    图  3  水热反应前后木质素的1H NMR

    Figure  3  1H NMR of lignin before and after the hydrothermal reaction (a): 1H NMR spectrum of lignin before hydrothermal treatment; (b): 1H NMR spectrum of lignin after hydrothermal treatment at 300 ℃ and 20 MPa

    图  4  水热反应前后木质素的13C NMR

    Figure  4  13C NMR of lignin before and after the hydrothermal reaction (a): 13C NMR spectrum of lignin before hydrothermal treatment; (b): 13C NMR spectrum of lignin after hydrothermal treatment at 300 ℃ and 20 MPa

    图  5  不同解耦温度下木质素的液相产物的气相色谱-质谱联用谱图

    Figure  5  GC-MS spectra of the liquid-phase products of lignin at different decoupling temperatures (a): 100 ℃, 20 MPa; (b): 200 ℃, 20 MPa; (c): 300 ℃, 20 MPa

    图  6  不同解耦压力下木质素的液相产物的气相色谱-质谱联用谱图

    Figure  6  GC-MS spectra of the liquid-phase products of lignin at different decoupling pressures (a): 200 ℃, 20 MPa; (b): 200 ℃, 14 MPa; (c): 200 ℃, 8 MPa; (d): 200 ℃, 2 MPa

  • [1] 刘宁, 史成香, 潘伦, 张香文, 邹吉军. 生物质替代石油原料合成高密度燃料的研究进展[J]. 燃料化学学报,2021,49(12):1780−1790.

    LIU Ning, SHI Cheng-xiang, PAN Lun, ZHANG Xiang-wen, ZOU Ji-jun. Progress on using biomass derivatives to replace petroleum for synthesis of high-density fuels[J]. J Fuel Chem Technol,2021,49(12):1780−1790.
    [2] HICKEL J, KALLIS G. Is green growth possible?[J]. New Polit Econ,2020,25(4):469−486. doi: 10.1080/13563467.2019.1598964
    [3] ZHANG D H, WANG J Q, LIN Y G, SI Y L, HUANG C, YANG J, HUANG B, LI W. Present situation and future prospect of renewable energy in China[J]. Renewable Sustainable Energ Rev,2017,76:865−871. doi: 10.1016/j.rser.2017.03.023
    [4] PRASAD S, KUMAR A, MURALIKRISHNA K S. Biofuels production: A sustainable solution to combat climate change[J]. Indian J Agric Sci,2014,84(12):1443−1452.
    [5] YU S, YANG X, LI Q, ZHANG Y, ZHOU H. Breaking the temperature limit of hydrothermal carbonization of lignocellulosic biomass by decoupling temperature and pressure[J]. Green Energy Environ,2023,8(4):1216−1227.
    [6] TURSI A. A review on biomass: importance, chemistry, classification, and conversion[J]. Biofuel Res J,2019,6(2):962−979. doi: 10.18331/BRJ2019.6.2.3
    [7] YU S, YANG X, ZHAO P, LI Q, ZHOU H, ZHANG Y. From biomass to hydrochar: Evolution on elemental composition, morphology, and chemical structure[J]. J Energy Inst,2022,101:194−200. doi: 10.1016/j.joei.2022.01.013
    [8] LIAO Y H, KOELEWIJN S F, VAN DEN BOSSCHE G, VAN AELST J, VAN DEN BOSCH S, RENDERS T, NAVARE K, NICOLAI T, VAN AELST K, MAESEN M, MATSUSHIMA H, THEVELEIN J M, VAN ACKER K, LAGRAIN B, VERBOEKEND D, SELS B F. A sustainable wood biorefinery for low-carbon footprint chemicals production[J]. Science,2020,367(6484):1385−1390. doi: 10.1126/science.aau1567
    [9] XU J Y, LI C Y, DAI L, XU C L, ZHONG Y D, YU F X, SI C L. Biomass fractionation and lignin fractionation towards lignin valorization[J]. ChemSusChem,2020,13(17):4284−4295. doi: 10.1002/cssc.202001491
    [10] YU S, WANG L, LI Q, ZHANG Y, ZHOU H. Sustainable carbon materials from the pyrolysis of lignocellulosic biomass[J]. Mater Today Sustainability,2022,19:100209. doi: 10.1016/j.mtsust.2022.100209
    [11] KOZLIAK E I, KUBATOVA A, ARTEMYEVA A A, NAGEL E, ZHANG C, RAJAPPAGOWDA R B, SRNIRNOVA A L. Thermal liquefaction of lignin to aromatics: Efficiency, selectivity, and product analysis[J]. ACS Sustainable Chem Eng,2016,4(10):5106−5122. doi: 10.1021/acssuschemeng.6b01046
    [12] UPTON B M, KASKO A M. Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective[J]. Chem Rev,2016,116(4):2275−2306. doi: 10.1021/acs.chemrev.5b00345
    [13] ZHOU H, WANG H, SADOW A D, SLOWING, II. Toward hydrogen economy: Selective guaiacol hydrogenolysis under ambient hydrogen pressure[J]. Appl Catal B: Environ,2020,270:9.
    [14] ZHU W Z, WESTMAN G, THELIANDER H. Investigation and characterization of lignin precipitation in the LignoBoost process[J]. J Wood Chem Technol,2014,34(2):77−97. doi: 10.1080/02773813.2013.838267
    [15] BELKHEIRI T, ANDERSSON S I, MATTSSON C, OLAUSSON L, THELIANDER H, VAMLING L. Hydrothermal liquefaction of kraft lignin in subcritical water: Influence of phenol as capping agent[J]. Energy Fuels,2018,32(5):5923−5932. doi: 10.1021/acs.energyfuels.8b00068
    [16] LIU W J, JIANG H, YU H Q. Thermochemical conversion of lignin to functional materials: A review and future directions[J]. Green Chem,2015,17(11):4888−4907. doi: 10.1039/C5GC01054C
    [17] SUN R C. Lignin source and structural characterization[J]. ChemSusChem,2020,13(17):4385−4393. doi: 10.1002/cssc.202001324
    [18] BAJWA D S, POURHASHEM G, ULLAH A H, BAJWA S G. A concise review of current lignin production, applications, products and their environmental impact[J]. Ind Crop Prod,2019,139:111526.
    [19] SUN Z H, FRIDRICH B, DE SANTI A, ELANGOVAN S, BARTA K. Bright side of lignin depolymerization: Toward new platform chemicals[J]. Chem Rev,2018,118(2):614−678. doi: 10.1021/acs.chemrev.7b00588
    [20] 赵勃, 吴凯, 仲惟鹏, 魏刚, 胡宗华, 郑文广, 阮慧锋, 严新明, 马颖, 王博, 江天霖, 张会岩. 木质素炭与ZSM-5联合催化热解木质素制备芳烃实验研究[J]. 燃料化学学报,2021,49(3):303−310.

    ZHAO Bo, WU Kai, ZHONG Li-peng, WEI Gang, HU Zong-hua, ZHENG Wen-guang, RUAN Hui-feng, YAN Xin-ming, MA Yin, WANG Bo, JIANG Tian-lin, ZHANG Hui-yan. Experimental study on catalytic pyrolysis of lignin under char and ZSM-5 for preparation of aromatics[J]. J Fuel Chem Technol,2021,49(3):303−310.
    [21] FAHMY T Y A, FAHMY Y, MOBARAK F, EL-SAKHAWY M, ABOU-ZEID R E. Biomass pyrolysis: Past, present, and future[J]. Environ Dev Sustain,2020,22(1):17−32. doi: 10.1007/s10668-018-0200-5
    [22] HA J M, HWANG K R, KIM Y M, JAE J, KIM K H, LEE H W, KIM J Y, PARK Y K. Recent progress in the thermal and catalytic conversion of lignin[J]. Renewable Sustainable Energy Rev,2019,111:422−441. doi: 10.1016/j.rser.2019.05.034
    [23] 黄明, 朱亮, 马中青, 周秉亮, 刘晓欢, 叶结旺, 赵超. 金属改性分子筛催化热解木质素制取轻质芳烃[J]. 燃料化学学报,2021,49(3):292−302.

    HUANG Ming, ZHU Liang, MA Zhong-qing, ZHOU Bing-liang, LIU Xiao-huan, YE Jie-wang, ZHAO Chao. Production of light aromatics from the fast pyrolysis of lignin catalyzed by metal-modified H-ZSM-5 zeolites[J]. J Fuel Chem Technol,2021,49(3):292−302.
    [24] BELKHEIRI T, MATTSSON C, ANDERSSON S I, OLAUSSON L, AMAND L E, THELIANDER H, VAMLING L. Effect of pH on kraft lignin depolymerisation in subcritical water[J]. Energy Fuels,2016,30(6):4916−4924. doi: 10.1021/acs.energyfuels.6b00462
    [25] ZHOU H, WANG H, PERRAS F A, NAIK P, PRUSKI M, SADOW A D, SLOWING, II. Two-step conversion of Kraft lignin to nylon precursors under mild conditions[J]. Green Chem,2020,22(14):4676−4682. doi: 10.1039/D0GC01220C
    [26] 娄静, 廖玮婷, 王智玉, 李璐, 李雁, 解新安. 钙钛矿催化木质素水热液化[J]. 燃料化学学报,2022,50(8):984−992. doi: 10.1016/S1872-5813(22)60004-5

    LOU Jing, LIAO Wei-ting, WANG Zhi-yu, LI Lu, LI Yan, XIE Xin-an. Hydrothermal liquefaction of lignin to aromatics over the perovskite catalysts[J]. J Fuel Chem Technol,2022,50(8):984−992. doi: 10.1016/S1872-5813(22)60004-5
    [27] OREGUI-BENGOECHEA M, GANDARIAS I, ARIAS P L, BARTH T. Unraveling the role of formic acid and the type of solvent in the catalytic conversion of lignin: A holistic approach[J]. ChemSusChem,2017,10(4):754−766. doi: 10.1002/cssc.201601410
    [28] YE K, LIU Y, WU S B, ZHUANG J P. A review for lignin valorization: Challenges and perspectives in catalytic hydrogenolysis [J]. Ind Crop Prod, 2021, 172.
    [29] KUMAR A, BISWAS B, BHASKAR T. Effect of cobalt on titania, ceria and zirconia oxide supported catalysts on the oxidative depolymerization of prot and alkali lignin[J]. Bioresour Technol,2020,299:122589.
    [30] KIM K H, FAROOQ A, SONG M Y, JUNG S C, JEON K J, SONG J, KO C H, JAE J, PARK Y K. Acetaldehyde removal and increased H-2/CO gas yield from biomass gasification over metal-loaded Kraft lignin char catalyst[J]. J Environ Manage,2019,232:330−335. doi: 10.1016/j.jenvman.2018.11.054
    [31] AKIYA N, SAVAGE P E. Roles of water for chemical reactions in high-temperature water[J]. Chem Rev,2002,102(8):2725−2750. doi: 10.1021/cr000668w
    [32] TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies[J]. Energy,2011,36(5):2328−2342. doi: 10.1016/j.energy.2011.03.013
    [33] LAPPALAINEN J, BAUDOUIN D, HORNUNG U, SCHULER J, MELIN K, BJELIC S, VOGEL F, KONTTINEN J, JORONEN T. Sub- and supercritical water liquefaction of kraft lignin and black liquor derived lignin[J]. Energies,2020,13(13):3309.
    [34] YU S, ZHAO P, YANG X, LI Q, MOHAMED B A, SAAD J M, ZHANG Y, ZHOU H. Low-temperature hydrothermal carbonization of pectin enabled by high pressure[J]. J Anal Appl Pyrolysis,2022,166:105627. doi: 10.1016/j.jaap.2022.105627
    [35] HEGER K, UEMATSU M, FRANCK E U. The static dielectric-constant of water at high-pressures and temperatures to 500 MPa and 550-degrees-C[J]. Berichte der Bunsengesellschaft für physikalische Chemie,1980,84(8):758−762. doi: 10.1002/bbpc.19800840814
    [36] YU S, ZHAO P, YANG X, LI Q, ZHANG Y, ZHOU H. Formation and evolution of pectin-derived hydrothermal carbon from pectin[J]. Fuel,2022,326:124997. doi: 10.1016/j.fuel.2022.124997
    [37] KRUSE A, DINJUS E. Hot compressed water as reaction medium and reactant - Properties and synthesis reactions[J]. J Supercrit Fluids,2007,39(3):362−380. doi: 10.1016/j.supflu.2006.03.016
    [38] ONWUDILI J A, WILLIAMS P T. Catalytic depolymerization of alkali lignin in subcritical water: Influence of formic acid and Pd/C catalyst on the yields of liquid monomeric aromatic products[J]. Green Chem,2014,16(11):4740−4748. doi: 10.1039/C4GC00854E
    [39] RANA M, TAKI G, ISLAM M N, AGARWAL A, JO Y T, PARK J H. Effects of temperature and salt catalysts on depolymerization of kraft lignin to aromatic phenolic compounds[J]. Energy Fuels,2019,33(7):6390−6404. doi: 10.1021/acs.energyfuels.9b00808
    [40] BISWAS B, KUMAR A, SAINI K, RAWAT S, KAUR R, KRISHNA B B, BHASKAR T. Catalytic hydrothermal liquefaction of alkali lignin at low temperature: Effect of acid and base catalysts on phenolic monomers production [J]. Biomass Convers Bior, 2022: 1−10.
    [41] YU S, DONG X, ZHAO P, LUO Z, SUN Z, YANG X, LI Q, WANG L, ZHANG Y, ZHOU H. Decoupled temperature and pressure hydrothermal synthesis of carbon sub-micron spheres from cellulose[J]. Nat Commun,2022,13(1):3616. doi: 10.1038/s41467-022-31352-x
    [42] YU S, XIE M, LI Q, ZHANG Y, ZHOU H. Evolution of kraft lignin during hydrothermal treatment under different reaction conditions[J]. J Energy Inst,2022,103:147−153. doi: 10.1016/j.joei.2022.06.005
    [43] XU C, ARANCON R A D, LABIDI J, LUQUE R. Lignin depolymerisation strategies: towards valuable chemicals and fuels[J]. Chem Soc Rev,2014,43(22):7485−7500. doi: 10.1039/C4CS00235K
  • 加载中
图(7)
计量
  • 文章访问数:  1312
  • HTML全文浏览量:  286
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-10
  • 修回日期:  2023-03-01
  • 录用日期:  2023-03-02
  • 网络出版日期:  2023-04-18
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回