留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双功能碳基固体酸催化木糖制备糠醛的研究

罗超 金才迪 朱玲君 王树荣

罗超, 金才迪, 朱玲君, 王树荣. 双功能碳基固体酸催化木糖制备糠醛的研究[J]. 燃料化学学报(中英文), 2023, 51(8): 1155-1164. doi: 10.19906/j.cnki.JFCT.2023030
引用本文: 罗超, 金才迪, 朱玲君, 王树荣. 双功能碳基固体酸催化木糖制备糠醛的研究[J]. 燃料化学学报(中英文), 2023, 51(8): 1155-1164. doi: 10.19906/j.cnki.JFCT.2023030
LUO Chao, JIN Cai-di, ZHU Ling-jun, WANG Shu-rong. Preparation of furfural from xylose catalyzed by difunctional carbon-based solid acid[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1155-1164. doi: 10.19906/j.cnki.JFCT.2023030
Citation: LUO Chao, JIN Cai-di, ZHU Ling-jun, WANG Shu-rong. Preparation of furfural from xylose catalyzed by difunctional carbon-based solid acid[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1155-1164. doi: 10.19906/j.cnki.JFCT.2023030

双功能碳基固体酸催化木糖制备糠醛的研究

doi: 10.19906/j.cnki.JFCT.2023030
基金项目: 国家重点研发项目(2018YFB1501500)资助
详细信息
    通讯作者:

    Tel: 0571-87952801, E-mail: srwang@zju.edu.cn

  • 中图分类号: TK6

Preparation of furfural from xylose catalyzed by difunctional carbon-based solid acid

Funds: The project was supported by the National Key R&D Program of China (2018YFB1501500).
  • 摘要: 本研究以明胶和植酸(PA)为碳源,并掺杂FeCl3·6H2O和ZnCl2,通过硫酸磺化法制备了双功能碳基固体酸催化剂用于高效催化木糖制备糠醛。采用SEM、BET、FT-IR、STEM-EDS等方法对不同炭化温度下制备的催化剂进行了表征,揭示了催化剂的物理化学性质。并考察了催化剂的炭化温度、FeCl3·6H2O与ZnCl2物质的量比、反应温度、反应时间、γ-戊内酯(GVL)与H2O的体积比、催化剂用量对木糖转化为糠醛(FF)的影响。结果表明,600 ℃炭化制备的催化剂CNPS600-Fe4-Zn2催化效果较好,用0.03 g的CNPS600-Fe4-Zn2(FeCl3·6H2O与ZnCl2物质的量比为4∶2)在3 mL的GVL/H2O(体积比为9∶1)溶剂体系中催化0.06 g木糖制备FF,当反应温度为170 ℃、反应时间为120 min时,木糖的转化率为99.6%,FF的摩尔产率可达85.8%。此外,还对催化剂的循环性能进行了测试,经五次循环实验后FF摩尔产率和木糖转化率均能保持在原来的80%以上,表明该催化剂具有较高的催化活性和较好的水热稳定性。
  • FIG. 2581.  FIG. 2581.

    FIG. 2581.  FIG. 2581.

    图  1  不同催化剂的扫描电镜照片

    Figure  1  SEM images of different catalysts

    图  2  不同催化剂的氮气吸附-解吸等温曲线(a)和孔径分布(b)

    Figure  2  Nitrogen adsorption-desorption isotherms curves (a) and pore size distribution (b) of different catalysts

    图  3  反应前后催化剂CNPS600-Fe4-Zn2的傅里叶变换红外光谱谱图

    Figure  3  FT-IR spectra of catalyst CNPS600-Fe4-Zn2 before and after the reaction

    图  4  催化剂CNPS600-Fe4-Zn2的扫描透射电子显微镜照片

    Figure  4  STEM-EDS images of catalyst CNPS600-Fe4-Zn2

    图  5  催化剂CNPS600-Fe4-Zn2的XPS谱图

    Figure  5  XPS spectra of catalyst CNPS600-Fe4-Zn2

    (a): full spectrum; (b): Fe 2p spectrum; (c): Zn 2p spectrum

    图  6  不同炭化温度制备的催化剂对木糖转化的影响

    Figure  6  Effects of catalysts prepared at different carbonization temperatures on xylose conversion

    图  7  ZnCl2与FeCl3·6H2O物质的量比对木糖转化率和FF产率的影响

    Figure  7  Effects of the molar ratio of ZnCl2 to FeCl3·6H2O on xylose conversion rate and FF yield

    图  8  反应温度和时间对FF摩尔产率的影响(a)和木糖转化率的影响(b)

    Figure  8  Effects of reaction temperature and time on FF molar yield (a) and xylose conversion (b)

    图  9  不同GVL与H2O体积比1∶4−1∶0(a)和4∶1−1∶0(b)对木糖水热转化为FF的影响

    Figure  9  Effects of different GVL to H2O volume ratio of 1∶4−1∶0 (a) and 4∶1−1∶0 (b) on the hydrothermal conversion of xylose to FF

    图  10  催化剂用量对木糖水热转化为FF的影响

    Figure  10  Effects of mass of catalyst on the hydrothermal conversion of xylose to FF

    图  11  催化剂CNPS600-Fe4-Zn2的循环使用性能

    Figure  11  Recycling property of CNPS600-Fe4-Zn2 catalyst

    表  1  不同催化剂的比表面积和孔道结构

    Table  1  Specific surface area and pore structure of different catalysts

    CatalystSpecific surface
    area /(m2·g−1)
    Average pore
    width /nm
    Total pore
    volume /
    (cm3·g−1)
    CNPS400-Fe4-Zn210.63.820.0950
    CNPS600-Fe4-Zn21553.820.745
    CNPS800-Fe4-Zn218.913.00.353
    下载: 导出CSV

    表  2  ICP测试结果

    Table  2  Results of ICP test

    CatalystSampling
    quality /g
    Constant
    volume /mL
    Test
    element
    Test solution element
    concentration /(mg·L−1)
    Multiple of
    the dilution
    Element content
    Cx /(mg·kg−1)
    Element
    content w /%
    CNPS400-Fe4-Zn20.054825Fe4.9212243.610.220
    0.054825Zn2.111962.140.100
    0.054825S9.302084863.148.49
    CNPS600-Fe4-Zn20.053625Fe8.722081324.638.13
    0.053625Zn3.301015410.451.54
    0.053625S7.421034594.223.46
    CNPS800-Fe4-Zn20.049025Fe5.681029000.002.90
    0.049025Zn3.431017520.411.75
    0.049025S4.801024469.392.45
    下载: 导出CSV

    表  3  催化剂循环实验中催化剂的回收率*

    Table  3  Recovery of catalysts in catalyst cycling experiment

    RecycleFresh12345
    Amount of recovery /g0.720.630.580.520.460.41
    Recovery rate /%87.592.189.788.590.0
    Recovery of catalysts in catalyst cycling experiments*: In order to make the remaining catalyst sufficient for the next cycle, the reaction raw material, mixed solvent, catalyst, etc. were expanded by 24 times in the catalyst cycle experiment
    下载: 导出CSV
  • [1] PERALTA-YAHYA P P, ZHANG F, DEL CARDAYRE S B, KEASLING J D. Microbial engineering for the production of advanced biofuels[J]. Nature,2012,488(7411):320−328. doi: 10.1038/nature11478
    [2] STEEN E J, KANG Y, BOKINSKY G, HU Z, SCHIRMER A, MCCLURE A, DEL CARDAYRE S B, KEASLING J D. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass[J]. Nature,2010,463(7280):559−U182. doi: 10.1038/nature08721
    [3] ZHANG L, YU H, WANG P, LI Y. Production of furfural from xylose, xylan and corncob in gamma-valerolactone using FeCl3·6H2O as catalyst[J]. Bioresour Technol,2014,151:355−360. doi: 10.1016/j.biortech.2013.10.099
    [4] LUO Y, LI Z, LI X, LIU X, FAN J, CLARK J H, HU C. The production of furfural directly from hemicellulose in lignocellulosic biomass: A review[J]. Catal Today,2019,319:14−24. doi: 10.1016/j.cattod.2018.06.042
    [5] SONG S, DI L, WU G, DAI W, GUAN N, LI L. Meso-Zr-Al-beta zeolite as a robust catalyst for cascade reactions in biomass valorization[J]. Appl Catal B: Environ,2017,205:393−403. doi: 10.1016/j.apcatb.2016.12.056
    [6] SONG S, FUNG KIN YUEN V, DI L, SUN Q, ZHOU K, YAN N. Integrating biomass into the organonitrogen chemical supply chain: Production of pyrrole and d-proline from furfural[J]. Angew Chem, Int Edit,2020,59(45):19846−19850. doi: 10.1002/anie.202006315
    [7] ZHANG L, TIAN L, SUN R, LIU C, KOU Q, ZUO H. Transformation of corncob into furfural by a bifunctional solid acid catalyst[J]. Bioresour Technol,2019,276:60−64. doi: 10.1016/j.biortech.2018.12.094
    [8] SUN K, SHAO Y, LIU P, ZHANG L, GAO G, DONG D, ZHANG S, HU G, XU L, HU X. A solid iron salt catalyst for selective conversion of biomass-derived C5 sugars to furfural[J]. Fuel,2021,300:120990. doi: 10.1016/j.fuel.2021.120990
    [9] ZHANG T, LI W, XU Z, LIU Q, MA Q, JAMEEL H, CHANG H, MA L. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone[J]. Bioresour Technol,2016,209:108−114. doi: 10.1016/j.biortech.2016.02.108
    [10] WANG X, QIU M, TANG Y, YANG J, SHEN F, QI X, YU Y. Synthesis of sulfonated lignin-derived ordered mesoporous carbon for catalytic production of furfural from xylose[J]. Int J Biol Macromol,2021,187:232−239. doi: 10.1016/j.ijbiomac.2021.07.155
    [11] DAI Y, YANG S, WANG T, TANG R, WANG Y, ZHANG L. High conversion of xylose to furfural over corncob residue-based solid acid catalyst in water-methyl isobutyl ketone[J]. Ind Crop Prod,2022,180:114781. doi: 10.1016/j.indcrop.2022.114781
    [12] LI X, LU X, LIANG M, XU R, YU Z, DUAN B, LU L, SI C. Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst[J]. Waste Manage,2020,108:119−126. doi: 10.1016/j.wasman.2020.04.039
    [13] XIONG S, LUO C, YU Z, JI N, ZHU L, WANG S. Dual-functional carbon-based solid acid-induced hydrothermal conversion of biomass saccharides: catalyst rational design and kinetic analysis[J]. Green Chem,2021,23(21):8458−8467. doi: 10.1039/D1GC01968F
    [14] LIU C, WYMAN C E. The enhancement of xylose monomer and xylotriose degradation by inorganic salts in aqueous solutions at 180°C[J]. Carbohydr Res,2006,341(15):2550−2556. doi: 10.1016/j.carres.2006.07.017
    [15] KONWAR L J, MÄKI-ARVELA P, MIKKOLA J P. SO3H-containing functional carbon materials: Synthesis, structure, and acid catalysis[J]. Chem Rev,2019,119(22):11576−11630. doi: 10.1021/acs.chemrev.9b00199
    [16] YANG T, LI W, SU M, LIU Y, LIU M. Production of furfural from xylose catalyzed by a novel calcium gluconate derived carbon solid acid in 1, 4-dioxane[J]. New J Chem,2020,44(19):7968−7975. doi: 10.1039/D0NJ00619J
    [17] RUSANEN A, KUPILA R, LAPPALAINEN K, KÄRKKÄINEN J, HU T, LASSI U. Conversion of xylose to furfural over lignin-based activated carbon-supported iron catalysts[J]. Catalysts,2020,10(8):821. doi: 10.3390/catal10080821
    [18] WANG S, ZHAO Y, LIN H, CHEN J, ZHU L, LUO Z. Conversion of C5 carbohydrates into furfural catalyzed by a Lewis acidic ionic liquid in renewable γ-valerolactone[J]. Green Chem,2017,19(16):3869−3879. doi: 10.1039/C7GC01298E
    [19] MELLMER M A, SENER C, GALLO J M R, LUTERBACHER J S, ALONSO D M, DUMESIC J A. Solvent effects in acid-catalyzed biomass conversion reactions[J]. Angew Chem, Int Ed,2014,53(44):11872−11875. doi: 10.1002/anie.201408359
    [20] ARAUJO R O, CHAAR J D S, QUEIROZ L S, DA ROCHA FILHO G N, DA COSTA C E F, DA SILVA G C T, LANDERS R, COSTA M J F, GONÇALVES A A S, DE SOUZA L K C. Low temperature sulfonation of acai stone biomass derived carbons as acid catalysts for esterification reactions[J]. Energy Conv Manag,2019,196:821−830. doi: 10.1016/j.enconman.2019.06.059
    [21] LAM E, CHONG J H, MAJID E, LIU Y, HRAPOVIC S, LEUNG ACW, LUONG, J H T. Carbocatalytic dehydration of xylose to furfural in water[J]. Carbon,2012,50(3):1033−1043. doi: 10.1016/j.carbon.2011.10.007
    [22] GENG L, WANG Y, YU G, ZHU Y. Efficient carbon-based solid acid catalysts for the esterification of oleic acid[J]. Catal Commun,2011,13(1):26−30. doi: 10.1016/j.catcom.2011.06.014
    [23] YUAN C, WANG X, YANG X, ALGHAMDI A A, ALHARTHI F A, CHENG X, DENG Y. Sulfonic acid-functionalized core-shell Fe3O4@carbon microspheres as magnetically recyclable solid acid catalysts[J]. Chin Chem Lett,2021,32(6):2079−2085. doi: 10.1016/j.cclet.2020.11.027
    [24] PERŠIN Z, MAVER U, PIVEC T, MAVER T, VESEL A, MOZETIČ M, STANA-KLEINSCHEK K. Novel cellulose based materials for safe and efficient wound treatment[J]. Carbohydr Polym,2014,100:55−64. doi: 10.1016/j.carbpol.2013.03.082
    [25] QI W, HE C, WANG Q, LIU S, YU Q, WANG W, LEKSAWASDI N, WANG C, YUAN Z. Carbon-based solid acid pretreatment in corncob saccharification: Specific xylose production and efficient enzymatic hydrolysis[J]. ACS Sustainable Chem Eng,2018,6(3):3640−3648. doi: 10.1021/acssuschemeng.7b03959
    [26] XU S, YIN C, PAN D, HU F, WU Y, MIAO Y, GAO L, XIAO G. Efficient conversion of glucose into 5-hydroxymethylfurfural using a bifunctional Fe3 + modified Amberlyst-15 catalyst[J]. Sustainable Energy Fuels,2019,3(2):390−395. doi: 10.1039/C8SE00499D
    [27] YANG H, WANG L, JIA L, QIU C, PANG Q, PAN X. Selective decomposition of cellulose into glucose and levulinic acid over Fe-resin catalyst in NaCl solution under hydrothermal conditions[J]. Ind Eng Chem Res,2014,53(15):6562−6568. doi: 10.1021/ie500318t
    [28] TIAN S, WU Y, LI K, XIE H, REN H, ZHAO Y, MIAO Z, TAN Y. Isobutanol synthesis from syngas over Zn-Cr catalyst: Effect of Zn/Cr element ratio[J]. Energy Technol,2018,6(9):1805−1812. doi: 10.1002/ente.201700908
    [29] GONZALEZ-SERRANO E, CORDERO T, RODRIGUEZ-MIRASOL J, COTORUELO L, RODRIGUEZ J J. Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors[J]. Water Res,2004,38(13):3043−3050. doi: 10.1016/j.watres.2004.04.048
    [30] ZHAO Y, LU K, XU H, ZHU L, WANG S. A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion[J]. Renewable Sustainable Energy Rev,2021,139:110706. doi: 10.1016/j.rser.2021.110706
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  175
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-03
  • 修回日期:  2023-04-03
  • 录用日期:  2023-04-04
  • 网络出版日期:  2023-04-18
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回