留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绿色合成介孔碳负载(Ni)MoS2加氢脱硫催化剂

梁吉雷 吴雯洁 吴萌萌 花加伟 柳云骐 刘晨光

梁吉雷, 吴雯洁, 吴萌萌, 花加伟, 柳云骐, 刘晨光. 绿色合成介孔碳负载(Ni)MoS2加氢脱硫催化剂[J]. 燃料化学学报(中英文), 2023, 51(12): 1761-1771. doi: 10.19906/j.cnki.JFCT.2023033
引用本文: 梁吉雷, 吴雯洁, 吴萌萌, 花加伟, 柳云骐, 刘晨光. 绿色合成介孔碳负载(Ni)MoS2加氢脱硫催化剂[J]. 燃料化学学报(中英文), 2023, 51(12): 1761-1771. doi: 10.19906/j.cnki.JFCT.2023033
LIANG Ji-lei, WU Wen-jie, WU Meng-meng, HUA Jia-wei, LIU Yun-qi, LIU Chen-guang. Green synthesis of mesoporous carbon supported (Ni)MoS2 as efficient hydrodesulfurization catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1761-1771. doi: 10.19906/j.cnki.JFCT.2023033
Citation: LIANG Ji-lei, WU Wen-jie, WU Meng-meng, HUA Jia-wei, LIU Yun-qi, LIU Chen-guang. Green synthesis of mesoporous carbon supported (Ni)MoS2 as efficient hydrodesulfurization catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1761-1771. doi: 10.19906/j.cnki.JFCT.2023033

绿色合成介孔碳负载(Ni)MoS2加氢脱硫催化剂

doi: 10.19906/j.cnki.JFCT.2023033
基金项目: 国家自然科学基金(22078227),江苏省高校“青蓝工程”,重质油国家重点实验室开放课题(SKLOP201902005),江苏省高校自然科学基金面上项目(22KJB150040)和江苏省大学生创新创业训练计划(202212917019Z)资助
详细信息
    通讯作者:

    E-mail: liangjilei_httplan@126.com

  • 中图分类号: TQ426.95

Green synthesis of mesoporous carbon supported (Ni)MoS2 as efficient hydrodesulfurization catalyst

Funds: The project was supported by the National Natural Science Foundation of China (22078227), Qing Lan Project of Jiangsu Province, State Key Laboratory of Heavy Oil Processing (SKLOP201902005), Natural Science Foundation of Jiangsu Higher Education Institutions of China (22KJB150040), and Undergraduate Training Program for Innovation and Entrepreneurship of Jiangsu Province (202212917019Z).
  • 摘要: 以Anderson结构Ni-Mo杂多酸簇(NH4)4[NiMo6O24H6]·5H2O、硫脲、柠檬酸、氯化钠为原料,采用冻干法得到前驱体后焙烧、洗涤得到介孔碳骨架负载(Ni)MoS2纳米颗粒的加氢脱硫催化剂,考察了其对二苯并噻吩的加氢脱硫活性,并采用X射线衍射、N2低温吸附-脱附、拉曼光谱、X光电子能谱、扫描电子显微镜、高分辨透射电镜、程序升温还原等表征手段对催化剂进行了分析。结果表明,介孔碳骨架负载(Ni)MoS2纳米颗粒催化剂具有较弱的载体-金属相互作用,MoS2纳米颗粒平均长度较短(4.9 nm),层数适宜(4.8),NiMoS活性相含量较高,二苯并噻吩的转化率可达94.1%,反应速率常数及活性位转换频率分别可达1.7 × 10–6 mol/(g·s)和2.8 × 10–3 s–1。该方法利用原位生成的氯化钠晶体及硫化氢气体分别作为介孔模板剂和硫化剂,实现了介孔碳载体与(Ni)MoS2纳米颗粒的同步合成及锚定,并为加氢脱硫催化剂的绿色制备提供了新的思路。
  • FIG. 2803.  FIG. 2803.

    FIG. 2803.  FIG. 2803.

    图  1  催化剂的制备流程示意图

    Figure  1  Schematic illustration of the catalyst preparation

    图  2  Ni3Mo6S/C、NiMo6S/C催化剂及其未洗涤中间产物的XRD谱图

    Figure  2  XRD patterns of Ni3Mo6S/C, NiMo6S/C and intermediate products

    图  3  Ni3Mo6S/C((a)、(b))和NiMo6S/C((c)、(d))催化剂洗涤前后的SEM照片

    Figure  3  SEM images of Ni3Mo6S/C ((a), (b)) and NiMo6S/C ((c), (d))

    图  4  Ni3Mo6S/C(a)和NiMo6S/C(b)催化剂的元素分布

    Figure  4  Element mapping images of Ni3Mo6S/C (a) and NiMo6S/C (b)

    图  5  样品的N2吸附-脱附等温线(a)和孔径分布(b)

    Figure  5  N2 adsorption-desorption isotherms (a) and pore diameter distributions (b) of samples

    图  6  Ni3Mo6S/C和NiMo6S/C催化剂的拉曼光谱谱图

    Figure  6  Raman spectra of Ni3Mo6S/C and NiMo6S/C

    图  7  Ni3Mo6S/C(a)和NiMo6S/C(b)催化剂的HRTEM照片

    Figure  7  HRTEM images of Ni3Mo6S/C (a) and NiMo6S/C (b)

    图  8  两种催化剂表面MoS2纳米颗粒长度(a)和堆垛层数(b)统计

    Figure  8  Distributions of slab length (a) and stacking number (b) of MoS2 slabs over the catalysts

    图  9  Ni3Mo6S/C和NiMo6S/C催化剂的XPS谱图

    Figure  9  XPS spectra of Ni3Mo6S/C and NiMo6S/C

    图  10  Ni3Mo6S/C和NiMo6S/C催化剂的TPR谱图

    Figure  10  TPR profiles of Ni3Mo6S/C and NiMo6S/C

    表  1  Ni3Mo6S/C和NiMo6S/C催化剂的HRTEM及XPS分析

    Table  1  Characteristics of Ni3Mo6S/C and NiMo6S/C calculated by HRTEM and XPS

    CatalystL /nmNMoSulf /%NiMoS /%S2–/%
    NiMo6S/C5.44.280.447.187.7
    Ni3Mo6S/C4.94.886.252.891.2
    下载: 导出CSV

    表  2  不同催化剂的DBT加氢脱硫反应

    Table  2  HDS activity of DBT over different catalysts

    CatalystxDBT /%kHDS /(10–6 mol·g–1·s–1)TOF* /(10–3·s–1)Product selectivity* /%
    HHBDT +
    THDBT
    BPCHBBP/CHB
    NiMo6S/C82.31.02.420.271.48.48.5
    NiMo6/Al2O363.20.61.219.266.414.44.6
    Ni3Mo6S/C94.11.72.810.282.67.211.5
    Ni3Mo6/Al2O371.60.81.817.872.49.87.4
    * Determined by controlling the LHSV to reach the xDBT of 50%
    下载: 导出CSV
  • [1] 聂红, 张乐, 丁石, 韩伟, 李大东. 柴油高效清洁化关键技术与应用[J]. 石油炼制与化工,2021,52(10):103−109. doi: 10.3969/j.issn.1005-2399.2021.10.018

    NIE Hong, ZHANG Le, DING Shi, HAN Wei, LI Dadong. Key technologies for efficient clean diesel production and commercial applications[J]. Chin Pet Process Petrochem Technol,2021,52(10):103−109. doi: 10.3969/j.issn.1005-2399.2021.10.018
    [2] 刘宾, 刘蕾, 柴永明, 赵晋翀, 刘晨光. Co调变MoS2催化剂的作用本质及其FCC汽油选择性加氢脱硫机理[J]. 燃料化学学报,2018,46(4):441−450. doi: 10.1016/S1872-5813(18)30019-7

    LIU Bin, LIU Lei, CHAI Yong-ming, ZHAO Jin-chong, LIU Chen-guang. Essential role of promoter Co on the MoS2 catalyst in selective hydrodesulfurization of FCC gasoline[J]. J Fuel Chem Technol,2018,46(4):441−450. doi: 10.1016/S1872-5813(18)30019-7
    [3] CHU S, LI X, ZHOU X, PRINS R, WAQAS Q, WANG A, SHENG Q, HAO Q. Preparation of Ni2P supported on Al2O3 and B2O3 mixed oxides by temperature–programmed reduction of phosphate precursors with low P/Ni ratios[J]. Top Catal,2020,63:1379−1387. doi: 10.1007/s11244-020-01344-6
    [4] SUN K, GUO H, JIAO F, CHAI Y, LI Y, LIU B, MINTOVA S, LIU C. Design of an intercalated nano-MoS2 hydrophobic catalyst with high rim sites to improve the hydrogenation selectivity in hydrodesulfurization reaction[J]. Appl Catal B: Environ,2021,286:119907. doi: 10.1016/j.apcatb.2021.119907
    [5] CHEN Z, LIU Y, CHEN J, ZHAO Y, JIANG T, ZHAO F, YU J, YANG H, YANG F, XU C. Synthesis of alumina-nitrogen-doped carbon support for CoMo catalysts in hydrodesulfurization process[J]. Chin J Chem Eng,2022,41:392−402. doi: 10.1016/j.cjche.2021.09.015
    [6] 马宝利, 徐铁钢, 韩志波, 张文成, 郭金涛. 植物固体纤维丝在NiMo柴油加氢脱硫催化剂中的应用[J]. 燃料化学学报,2019,47(7):863−869.

    MA Bao-li, XU Tie-gang, HAN Zhi-bo, ZHANG Wen-cheng, GUO Jin-tao. Application of plant fiber filament in NiMo diesel hydrodesulfurization catalyst[J]. J Fuel Chem Technol,2019,47(7):863−869.
    [7] 尹海亮, 刘新亮, 周同娜, 赵健, 蔺爱国. 乙二醇对磷掺杂NiMo/Al2O3加氢催化剂性能的影响[J]. 燃料化学学报,2019,47(12):1458−1467.

    YIN Hai-liang, LIU Xin-liang, ZHOU Tong-na, ZHAO Jian, LIN Ai-guo. Effect of ethylene glycol on the hydrogenation performance of P-doped NiMo/Al2O3 catalysts[J]. J Fuel Chem Technol,2019,47(12):1458−1467.
    [8] TOPSØE H, CLAUSEN B, CANDIA R, WIVEL C, MØRUP S. In situ Mössbauer emission spectroscopy studies of unsupported and supported sulfided Co–Mo hydrodesulfurization catalysts: Evidence for and nature of a Co-Mo-S phase[J]. J Catal,1981,68:433−452. doi: 10.1016/0021-9517(81)90114-7
    [9] 胡乃方, 崔海涛, 邱泽刚, 赵亮富, 孟欣欣, 赵正权, 敖广宇. 不同P负载量对Co-Mo/γ-Al2O3煤焦油加氢脱硫性能影响的研究[J]. 燃料化学学报,2016,44(6):745−753.

    HU Nai-fang, CUI Hai-tao, QIU Ze-gang, ZHAO Liang-fu, MENG Xin-xin, ZHAO Zheng-quan, AO Guang-yu. Effect of phosphorus loadings on the performance of Co-Mo/γ-Al2O3 in hydrodesulfurization of coal tar[J]. J Fuel Chem Technol,2016,44(6):745−753.
    [10] LAURITSEN J, NYBERG M, NORSKOV J, CLAUSEN B, TOPSØE H, LGSGAAD E, BESENBACHER F. Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy[J]. J Catal,2004,224:94−106. doi: 10.1016/j.jcat.2004.02.009
    [11] SALEH T, ALHAMMAD S, ABDULLAHI I, MUSTAQEEM M. Synthesis of molybdenum cobalt nanocatalysts supported on carbon for hydrodesulfurization of liquid fuels[J]. J Mol Liq,2018,272:715−721. doi: 10.1016/j.molliq.2018.09.118
    [12] 张革, 李国华, 杨帆, 李永峰. 碳基复合材料在深度脱硫领域的研究进展[J]. 太原理工大学学报,2022,53(3):559−570.

    ZHANG Ge, LI Guo-hua, YANG Fan, LI Yong-feng. Study of carbon composites in deep desulfurization[J]. J Taiyuan Univ Technol,2022,53(3):559−570.
    [13] HAJJAR Z, KAZEMEINI M, RASHIDI A, SOLTANALI S. Hydrodesulfurization catalysts based on carbon nanostructures: A review[J]. Fuller Nanotub Car N,2018,26(9):557−569. doi: 10.1080/1536383X.2018.1470509
    [14] RYABOHAPKA D, PICCOLO L, AOUINE M, BARGIELA P, BRIOIV S, AFANASIE P. Ultradispersed (Co)Mo catalysts with high hydrodesulfurization activity[J]. Appl Catal B: Environ,2022,302:120831. doi: 10.1016/j.apcatb.2021.120831
    [15] ESNEYDER P, AYALA G, BRITO J. Sulfidability and thiophene hydrodesulfurization activity of supported NiMo carbides[J]. Catal Commun,2014,53:9−14. doi: 10.1016/j.catcom.2014.04.018
    [16] XU H, JIANG W, WANG D, KANG X, SHAO L, LIU J, TIAN C, FU H. Controlling the growth of ZnNiMoSx on biomass-derived porous carbon materials for deep hydrodesulfurization[J]. Appl Catal A: Gen,2023,660:119188.
    [17] NATH P, YOGENDRA, VERMA N. Hydrodesulfurization of thiophene on activated carbon fiber supported NiMo catalysts[J]. Energy Fuels,2018,32(2):2183−2196. doi: 10.1021/acs.energyfuels.7b03407
    [18] HYNAUX A, SAYAG C, SUPPAN S, TRAWCZYNSKI J, LEWANDOWSKI M, SZYMANSKA A, DJEGA G. Kinetic study of the hydrodesulfurization of dibenzothiophene over molybdenum carbides supported on functionalized carbon black composite: Influence of indole[J]. Appl Catal B: Environ,2007,72(1):62−70.
    [19] XU J, SHI C, XIAO Z, GAO R, LI Y, ZHANG X, PAN L, ZOU J. Ni-modified MoS2 nanoflake arrays with stepped sites on carbon nanotubes for efficient hydrodesulfurization of coal-to-liquid fuel[J]. Chem Commun,2020,56(41):5540−5543. doi: 10.1039/D0CC00960A
    [20] GUO K, GU M, YU Z. Carbon nanocatalysts for aquathermolysis of heavy crude oil: Insights into thiophene hydrodesulfurization[J]. Energy Technol,2017,5(8):1228−1234. doi: 10.1002/ente.201600522
    [21] KAZAKOV M, KAZAKOVA M, VATUTINA Y, LARINA T, CHESALOV Y, GERASIMOV E, PROSVIRIN I, KLIMOV O, NOSKOV A. Comparative study of MWCNT and alumina supported CоMо hydrotreating catalysts prepared with citric acid as chelating agent[J]. Catal Today,2020,357:221−230. doi: 10.1016/j.cattod.2019.03.051
    [22] YANG L, WANG X, LIU Y, YU Z, LI R, QIU J. Layer-dependent catalysis of MoS2/graphene nanoribbon composites for efficient hydrodesulfurization[J]. Catal Sci Technol,2017,7(3):693−702. doi: 10.1039/C6CY02074G
    [23] SALEH T, HAMMADI A, SADDAMA A. A novel catalyst of nickel-loaded graphene decorated on molybdenum-alumina for the HDS of liquid fuels[J]. Chem Eng J,2021,406:125167. doi: 10.1016/j.cej.2020.125167
    [24] YANG L, WANG X, LIU Y, YU Z, LIANG J, CHEN B, SHI C, TIAN S, LI X, QIU J. Monolayer MoS2 anchored on reduced graphene oxide nanosheets for efficient hydrodesulfurization[J]. Appl Catal B: Environ,2017,200:211−221. doi: 10.1016/j.apcatb.2016.07.006
    [25] XU J, GUO Y, HUANG T, FAN Y. Hexamethonium bromide-assisted synthesis of CoMo/graphene catalysts for selective hydrodesulfurization[J]. Appl Catal B: Environ,2019,244:385−395. doi: 10.1016/j.apcatb.2018.11.065
    [26] LIANG J, WU M, WEI P, ZHAO J, HUANG H, LI C, LU Y, LIU Y, LIU C. Efficient hydrodesulfurization catalysts derived from Strandberg PMoNi polyoxometalates[J]. J Catal,2018,358:155−167. doi: 10.1016/j.jcat.2017.11.026
    [27] LIANG J, WU M, WANG J, WEI P, SUN B, LU Y, SUN D, LIU Y, LIU C. A new approach to construct a hydrodesulfurization catalyst from a crystalline precursor: Ligand-induced self-assembly, sulfidation and hydrodesulfurization[J]. Catal Sci Technol,2018,8:6330−6345. doi: 10.1039/C8CY02007H
    [28] LIANG J, FAN M, WU M, HUA J, CAI W, HUANG T, LIU Y, LIU C. In situ synthesis of MoS2 nanoflakes within a 3D mesoporous carbon framework for hydrodesulfurization of DBT[J]. J Catal,2022,415:153−164. doi: 10.1016/j.jcat.2022.10.006
    [29] LIANG J, WU M, ZHANG Z, WANG H, HUANG T, ZHAO L, LIU Y, LIU C. Constructing a superior Co-Mo HDS catalyst from a crystalline precursor separated from the impregnating solution[J]. Catal Sci Technol,2022,12:2278−2288. doi: 10.1039/D2CY00083K
    [30] LIANG J, WU M, ZHU N, GAO X, ZHU G, HUANG T, LIU Y, LIU C. A Ni-Mo polyoxometalate based on octamolybdate: Self-assemble and application in hydrotreating catalyst[J]. Catal Lett,2023,153:584−594.
    [31] NOMIYA K, TAKAHASHI T, SHIRAI T, MIWA M. Anderson-type heteropolyanions of molybdenum(VI) and tungsten(VI)[J]. Polyhedron,1987,6(3):213−218.
    [32] 李彦鹏, 张婷婷, 刘大鹏, 刘宾, 柴永明, 刘晨光. 环己二胺四乙酸对NiMo/Al2O3催化剂加氢脱硫活性的促进作用[J]. 中国石油大学学报(自然科学版),2019,43(6):151−158.

    LI Yan-peng, ZHANG Ting-ting, LIU Da-peng, LIU Bin, CHAI Yong-ming, LIU Chen-guang. Effect of cyclohexanediamine tetraacetic acid on hydrodesulfurization performance of NiMo/Al2O3 catalyst[J]. J China Univ Pet,2019,43(6):151−158.
    [33] WEI J, HUANG H, LUO Q, LIU N, WANG X, WANG X, ZHONG M, HUANG X. Synthesis of few layer amorphous 1T/2H MoS2 by a one-step ethanol/water solvothermal method and its hydrodesulfurization performance[J]. Catal Lett,2022,152(1):263−275. doi: 10.1007/s10562-021-03621-9
    [34] NAVA R, MOLINA I, CASTANO P, GUIL-LOPEZ R, PAWELEC B. Inhibition of CoMo/HMS catalyst deactivation in the HDS of 4, 6-DMDBT by support modification with phosphate[J]. Fuel,2011,90(8):2726−2737. doi: 10.1016/j.fuel.2011.03.049
    [35] 王小平, 马怀军, 王冬娥, 田志坚. 水热法制备分散型Co促进的MoS2悬浮床加氢脱硫催化剂[J]. 石油学报(石油加工),2021,37(6):1287−1297.

    WANG Xiao-ping, MA Huai-jun, WANG Dong-e, TIAN Zhi-jian. Preparation of the slurry bed hydrodesulfurization catalyst MoS2 promoted by dispersed colbalt by means of hydrothermal synthesis[J]. Acta Pet Sin (Pet Process Sect),2021,37(6):1287−1297.
    [36] SALEH T. Carbon nanotube–incorporated alumina as a support for MoNi catalysts for the efficient hydrodesulfurization of thiophenes[J]. Chem Eng J,2021,404:126987. doi: 10.1016/j.cej.2020.126987
    [37] HU Y, BAI Y, WU X, WEI X, CHEN J. MoS2 nanoflakes integrated in a 3D carbon framework for high-performance sodium-ion batteries[J]. J Alloy Compd,2019,797:1126−1132. doi: 10.1016/j.jallcom.2019.05.142
    [38] JORGE R, PERLA C, AIDA G, AYALA A, OSCAR C, AYALA PATRICIA M, ADOLFO R. Interaction of different molecules with the hydrogenation and desulfurization sites of NiMoS supported particles with different morphology[J]. Catal Today,2020,353:99−111. doi: 10.1016/j.cattod.2019.08.032
    [39] MENG Q, DUAN A, XU C, ZHAO Z, LI J, WANG B, LIU C, HU D, LI H, LI Y. Synthesis of novel hierarchically porous NiMo/ZSM-5–KIT-5 catalysts and their superior performance in hydrodenitrogenation of quinoline[J]. Catal Sci Technol,2018,8(19):5062−5072. doi: 10.1039/C8CY01060A
    [40] 刘娟, 李文英, 冯杰, 高翔. Ni对MoS2基催化剂活性相及加氢脱氮脱硫性能的影响[J]. 燃料化学学报,2021,49(10):1513−1521. doi: 10.1016/S1872-5813(21)60105-6

    LIU Juan, LI Wen-ying, FENG Jie, GAO Xiang. Influence of Ni on the active phase and hydrodenitrogenation and hydrodesulfurization activities of MoS2 catalysts[J]. J Fuel Chem Technol,2021,49(10):1513−1521. doi: 10.1016/S1872-5813(21)60105-6
    [41] ZHOU W, WEI Q, ZHOU Y, LIU M, DING S, YANG Q. Hydrodesulfurization of 4, 6-dimethyldibenzothiophene over NiMo sulfide catalysts supported on meso-microporous Y zeolite with different mesopore sizes[J]. Appl Catal B: Environ,2018,238:212−224.
    [42] 户安鹏, 陈文斌, 龙湘云, 韩伟, 张乐, 聂红. 柠檬酸对NiMo/γ-Al2O3催化剂中助剂Ni作用的影响[J]. 石油炼制与化工,2018,49(10):52−57. doi: 10.3969/j.issn.1005-2399.2018.10.011

    HU An-peng, CHEN Wen-bin, LONG Xiang-yun, HAN Wei, ZHANG Le, NIE Hong. Effect of citric acid on role of promotor Ni in NiMo/γ-Al2O3 catalyst[J]. Chin Pet Process Petrochem Technol,2018,49(10):52−57. doi: 10.3969/j.issn.1005-2399.2018.10.011
    [43] NINH T, MASSIN L, LAURENTI D, VRINAT M. A new approach in the evaluation of the support effect for NiMo hydrodesulfurization catalysts[J]. Appl Catal A: Gen,2011,407:29−39. doi: 10.1016/j.apcata.2011.08.019
    [44] CAO J, LI A, ZHANG Y, MU L, HUANG X, LI Y, YANG T, ZHANG C, ZHOU C. Highly efficient unsupported Co-doped nano-MoS2 catalysts for p-cresol hydrodeoxygenation[J]. Mol Catal,2021,505:111507. doi: 10.1016/j.mcat.2021.111507
    [45] LIU B, LIU L, CHAI Y, ZHAO J, LI Y, LIU D, LIU Y, LIU C. Effect of sulfiding conditions on the hydrodesulfurization performance of the ex-situ presulfided CoMoS/γ-Al2O3 catalysts[J]. Fuel,2018,234:1144−1153. doi: 10.1016/j.fuel.2018.08.001
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  178
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-15
  • 修回日期:  2023-04-03
  • 录用日期:  2023-04-14
  • 网络出版日期:  2023-04-25
  • 刊出日期:  2023-12-05

目录

    /

    返回文章
    返回