留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

K改性NiMoS/ZnAl氧化物负载型催化剂合成气制低碳醇性能研究

曹轶华 张鑫 阴雪利 甘永豪 代小平

曹轶华, 张鑫, 阴雪利, 甘永豪, 代小平. K改性NiMoS/ZnAl氧化物负载型催化剂合成气制低碳醇性能研究[J]. 燃料化学学报(中英文), 2024, 52(1): 29-37. doi: 10.19906/j.cnki.JFCT.2023036
引用本文: 曹轶华, 张鑫, 阴雪利, 甘永豪, 代小平. K改性NiMoS/ZnAl氧化物负载型催化剂合成气制低碳醇性能研究[J]. 燃料化学学报(中英文), 2024, 52(1): 29-37. doi: 10.19906/j.cnki.JFCT.2023036
CAO Yihua, ZHANG Xin, YIN Xueli, GAN Yonghao, DAI Xiaoping. K-modified NiMoS/ZnAl oxide catalysts for higher alcohols synthesis from syngas[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 29-37. doi: 10.19906/j.cnki.JFCT.2023036
Citation: CAO Yihua, ZHANG Xin, YIN Xueli, GAN Yonghao, DAI Xiaoping. K-modified NiMoS/ZnAl oxide catalysts for higher alcohols synthesis from syngas[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 29-37. doi: 10.19906/j.cnki.JFCT.2023036

K改性NiMoS/ZnAl氧化物负载型催化剂合成气制低碳醇性能研究

doi: 10.19906/j.cnki.JFCT.2023036
基金项目: 国家自然科学基金(21576288)资助
详细信息
    通讯作者:

    Tel: 18911226236, E-mail: daixp@cup.edu.cn

  • 中图分类号: O643

K-modified NiMoS/ZnAl oxide catalysts for higher alcohols synthesis from syngas

Funds: The project was supported by the National Natural Science Foundation of China (21576288)
  • 摘要: 采用共沉淀法和浸渍法,以ZnAl混合金属氧化物为载体,制备了系列不同K/Mo物质的量比的高分散K改性NiMoS/ZnAl催化剂,并对其合成气转化制低碳醇性能进行了研究。结果表明,K的引入可以调变MoS2片层的堆积程度和尺寸,提高NiSx和NiMoS之间的协同作用,促进低碳醇合成(HAS)过程中CHx的插入和非解离CO的插入能力,有效抑制烃类和CO2的生成。其中,K/Mo物质的量比为0.6的KNiMoS/ZnAl催化剂具有最多的双层MoS2结构(33.7%)和适宜的NiSx与NiMoS协同作用,产物中总醇选择性达到69.8%,低碳醇空时产率为78.6 mg/(g·h)。
  • FIG. 2877.  FIG. 2877.

    FIG. 2877.  FIG. 2877.

    图  1  (a)xKNiMoS/ZnAl、(b)KNiMoS/ZnAl-x催化剂的XRD谱图,和(c)xKNiMoS/ZnAl催化剂的Raman光谱谱图

    Figure  1  XRD patterns of (a) xKNiMoS/ZnAl catalysts, (b) KNiMoS/ZnAl-x catalysts, and (c) Raman spectra of xKNiMoS/ZnAl catalysts

    图  2  xKNiMoS/ZnAl催化剂的(a)Mo 3d、(b)S 2p和(c)Ni 2p谱图

    Figure  2  XPS spectra of (a) Mo 3d, (b) S 2p and (c) Ni 2p for xKNiMoS/ZnAl catalysts

    图  3  xKNiMoS/ZnAl催化剂(x=(a)0,(b)0.3,(c)0.6,(d)1.0)的TEM照片、MoS2的(e)晶粒堆积层数和(f)长度分布、xKNiMoS/ZnAl催化剂(x=(g)0.3,(h)1.0)的HAADF-STEM图片和元素分布

    Figure  3  TEM images of xKNiMoS/ZnAl catalysts (x=(a) 0, (b) 0.3, (c) 0.6, (d) 1.0), (e) MoS2 stacking degree and (f) MoS2 slab length, HAADF-STEM images and element mapping of xKNiMoS/ZnAl catalysts (x=(g) 0.3, (h) 1.0)

    图  4  xKNiMoS/ZnAl催化剂的(a)醇分布、(b)烃分布、(c)醇类ASF分布、(d)烃类ASF分布

    Figure  4  Carbon distribution of (a) alcohols and (b) hydrocarbons, the ASF distribution of (c) alcohols, and (d) hydrocarbons on xKNiMoS/ZnAl catalysts

    图  5  0.6KNiMoS/ZnAl催化剂100 h稳定性

    Figure  5  Stability test of 0.6KNiMoS/ZnAl for 100 h

    Reaction conditions: t=350 ℃, p=5 MPa, GHSV=3000 mL/(g·h) and CO/H2=1.

    图  6  NiSx和NiMoS双活性位协同增强低碳醇合成示意图

    Figure  6  Synergistic promotion effect for HAS by NiSx and NiMoS dual active sites

    表  1  xKNiMoS/ZnAl催化剂的ICP-OES元素分析

    Table  1  ICP-OES results of xKNiMoS/ZnAl catalysts

    SampleUItimate analysis w/%K/Mo
    KNiMoZnAl
    KNiMoS/ZnAl07.4912.1229.206.860
    0.3KNiMoS/ZnAl1.447.2712.3028.246.600.29
    0.6KNiMoS/ZnAl2.987.5412.4028.166.530.59
    1.0KNiMoS/ZnAl4.897.3312.2929.956.670.98
    下载: 导出CSV

    表  2  xKNiMoS/ZnAl催化剂的XPS表征

    Table  2  XPS characterization of xKNiMoS/ZnAl catalysts

    CatalystBinding energies for
    Mo 3d5/2/eV
    Sulfidation degree/%
    Mo4+Mo5+Mo6+
    NiMoS/ZnAl229.0230.2232.565.6
    0.3KNiMoS/ZnAl229.0230.2232.453.8
    0.6KNiMoS/ZnAl229.0230.1232.348.6
    1.0KNiMoS/ZnAl228.9230.2232.041.8
    下载: 导出CSV

    表  3  xKNiMoS/ZnAl催化剂HRTEM表征

    Table  3  HRTEM characterization of xKNiMoS/ZnAl catalysts

    CatalystLaverage/nmNaverageƒMo/%
    NiMoS/ZnAl5.802.4416.7
    0.3KNiMoS/ZnAl5.982.6415.9
    0.6KNiMoS/ZnAl5.962.9616.2
    1.0KNiMoS/ZnAl6.373.019.2
    下载: 导出CSV

    表  4  KNiMoS/ZnAl催化剂的HAS性能

    Table  4  Catalytic performance of carbon monoxide hydrogenation on KNiMoS/ZnAl catalysts

    CatalystxCO/%Selection s/%C2+OH STY/(mg·gcat−1·h−1)
    alcoholshydrocarbonsCO2
    NiMoS/ZnAl12.548.328.523.262.4
    0.3KNiMoS/ZnAl12.060.419.220.469.1
    0.6KNiMoS/ZnAl11.669.811.718.578.6
    1.0KNiMoS/ZnAl10.764.915.519.663.9
    KNiMoS/ZnAl-609.063.619.217.153.9
    KNiMoS/ZnAl-12010.764.915.519.663.9
    KNiMoS/ZnAl-1808.859.022.718.348.8
    Reaction conditions: p=5 MPa,t=350 ℃,GHSV=3000 mL/(g·h).
    下载: 导出CSV
  • [1] SPIVEY J J, EGBEBI A. Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas[J]. Chem Soc Rev,2007,36:1514−1528. doi: 10.1039/b414039g
    [2] FANG K, LI D, LIN M, et al. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas[J]. Catal Today,2009,147(2):133−138. doi: 10.1016/j.cattod.2009.01.038
    [3] DEVARAPALLI M, ATIYEH H K. A review of conversion processes for bioethanol production with a focus on syngas fermentation[J]. Biofuel Res J,2015,2(3):268−280. doi: 10.18331/BRJ2015.2.3.5
    [4] LAN E I, LIAO J C. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources[J]. Bioresour Technol,2013,135:339−349. doi: 10.1016/j.biortech.2012.09.104
    [5] ROSS J R H, KEULEN A N J V, HEGARTY M E S, et al. The catalytic conversion of natural gas to useful products[J]. Catal Today,1996,30:193−199. doi: 10.1016/0920-5861(96)00035-1
    [6] WILHELM D J, SIMBECK D R, KARP A D, et al. Syngas production for gas-to-liquids applications: technologies, issues and outlook[J]. Fuel Processing Technol,2001,71:139−148. doi: 10.1016/S0378-3820(01)00140-0
    [7] XIE W, ZHOU J, JI L, et al. Targeted design and synthesis of a highly selective Mo-based catalyst for the synthesis of higher alcohols[J]. RSC Adv,2016,6(45):38741−38745. doi: 10.1039/C6RA05332G
    [8] LUAN X, YONG J, DAI X, et al. Tungsten-doped molybdenum sulfide with dominant double-layer structure on mixed MgAl oxide for higher alcohol synthesis in CO hydrogenation[J]. Ind Eng Chem Res,2018,57(31):10170−10179.
    [9] LUK H T, MONDELLI C, FERRE D C, et al. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev,2017,46(5):1358−1426. doi: 10.1039/C6CS00324A
    [10] YONG J, LUAN X, DAI X, et al. Tuning the metal-support interaction in supported K-promoted NiMo catalysts for enhanced selectivity and productivity towards higher alcohols in CO hydrogenation[J]. Catal Sci Technol,2017,7(18):4206−4215. doi: 10.1039/C7CY01295K
    [11] XIAO K, BAO Z, QI X, et al. Advances in bifunctional catalysis for higher alcohol synthesis from syngas[J]. Chin J Catal,2013,34(1):116−129. doi: 10.1016/S1872-2067(11)60496-8
    [12] ZAMAN S, SMITH K J. A review of molybdenum catalysts for synthesis gas conversion to alcohols: catalysts, mechanisms and kinetics[J]. Catal Rev,2012,54(1):41−132. doi: 10.1080/01614940.2012.627224
    [13] HUANG X, XU X, LUAN X, et al. CoP nanowires coupled with CoMoP nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction[J]. Nano Energy,2020,68:104332. doi: 10.1016/j.nanoen.2019.104332
    [14] LIAKAKOU E T, HERACLEOUS E, TRIANTAFYLLIDIS K S, et al. K-promoted NiMo catalysts supported on activated carbon for the hydrogenation reaction of CO to higher alcohols: effect of support and active metal[J]. Appl Catal B: Environ,2015,165:296−305. doi: 10.1016/j.apcatb.2014.10.027
    [15] WANG J, XIE J, HUANG Y, et al. An efficient Ni-Mo-K sulfide catalyst doped with CNTs for conversion of syngas to ethanol and higher alcohols[J]. Appl Catal A: Gen,2013,468:44−51. doi: 10.1016/j.apcata.2013.08.026
    [16] MORRILL M R, THAO N T, SHOU H, et al. Origins of unusual alcohol selectivities over mixed MgAl oxide-supported K/MoS2 catalysts for higher alcohol synthesis from syngas[J]. ACS Catal,2013,3(7):1665−1675. doi: 10.1021/cs400147d
    [17] TAVASOLI A, KARIMI S, DAVARI M, et al. Enhancement of MoO3-K2O/CNTs nanocatalyst activity and selectivity in higher alcohols synthesis using microemulsion technique[J]. J Ind Eng Chem,2014,20(2):674−681. doi: 10.1016/j.jiec.2013.05.032
    [18] MORRILL M R, THAO N T, AGRAWAL P K, et al. Mixed MgAl oxide supported potassium promoted molybdenum sulfide as a selective catalyst for higher alcohol synthesis from syngas[J]. Catal Let,2012,142(7):875−881. doi: 10.1007/s10562-012-0827-z
    [19] TOULHOAT H. A perspective on the catalytic hydrogenation of aromatics by Co(Ni)MoS phases[J]. J Catal,2021,403:121−130. doi: 10.1016/j.jcat.2021.01.020
    [20] JARAMILLO T F, JØRGENSEN K P, BONDE J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science,2007,317(5834):100−102. doi: 10.1126/science.1141483
    [21] TABORGA CLAURE M, CHAI S-H, DAI S, et al. Tuning of higher alcohol selectivity and productivity in CO hydrogenation reactions over K/MoS2 domains supported on mesoporous activated carbon and mixed MgAl oxide[J]. J Catal,2015,324:88−97. doi: 10.1016/j.jcat.2015.01.015
    [22] ZHANG X, LUAN X, DAI X, et al. Enhanced higher alcohol synthesis from CO hydrogenation on Zn-modified MgAl-mixed oxide supported KNiMoS-based catalysts[J]. Ind Eng Chem Res,2020,59(4):1413−1421. doi: 10.1021/acs.iecr.9b04047
    [23] HEDRICK S A, CHUANG S S C, PANT A, et al. Activity and selectivity of Group VIII, alkali-promoted Mn-Ni, and Mo-based catalysts for C2+ oxygenate synthesis from the CO hydrogenation and CO/H2/C2H4 reactions.[J]. Catal Today,2000,55:247−257. doi: 10.1016/S0920-5861(99)00245-X
    [24] LI D, ZHAO N, QI H, et al. Ultrasonic preparation of Ni modified K2CO3/MoS2 catalyst for higher alcohols synthesis[J]. Catal Commun,2005,6(10):674−678. doi: 10.1016/j.catcom.2005.06.007
    [25] DING M, TU J, QIU M, et al. Impact of potassium promoter on Cu-Fe based mixed alcohols synthesis catalyst[J]. Appl Energy,2015,138:584−589. doi: 10.1016/j.apenergy.2014.01.010
    [26] AQUINO A D D, COBO A J G. Synthesis of higher alcohols with cobalt and copper based model catalysts: effect of the alkaline metals[J]. Catal Today,2001,65:209−216. doi: 10.1016/S0920-5861(00)00575-7
    [27] MASIH D, ROHANI S, KONDO J N, et al. Low-temperature methanol dehydration to dimethyl ether over various small-pore zeolites[J]. Appl Catal B: Environ,2017,217:247−255. doi: 10.1016/j.apcatb.2017.05.089
    [28] CHOUDARY B M, LAKSHMI KANTAM M, NEERAJA V, et al. Layered double hydroxide fluoride: a novel solid base catalyst for C-C bond formation[J]. Green Chem,2001,3(5):257−260. doi: 10.1039/b107124f
    [29] SANTOS V P, VAN DER LINDEN B, CHOJECKI A, et al. Mechanistic insight into the synthesis of higher alcohols from syngas: The role of K promotion on MoS2 catalysts[J]. ACS Catal,2013,3(7):1634−1637. doi: 10.1021/cs4003518
    [30] SUBRAMANI V, GANGWAL S K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol[J]. Energy Fuels,2008,22:814−839.
    [31] TIENTHAO N, HASSANZAHEDINIAKI M, ALAMDARI H, et al. Effect of alkali additives over nanocrystalline Co-Cu-based perovskites as catalysts for higher-alcohol synthesis[J]. J Catal,2007,245(2):348−357. doi: 10.1016/j.jcat.2006.10.026
    [32] SUáREZ PARíS R, MONTES V, BOUTONNET M, et al. Higher alcohol synthesis over nickel-modified alkali-doped molybdenum sulfide catalysts prepared by conventional coprecipitation and coprecipitation in microemulsions[J]. Catal Today,2015,258:294−303. doi: 10.1016/j.cattod.2014.12.003
    [33] ZENG F, XI X, CAO H, et al. Synthesis of mixed alcohols with enhanced C3+ alcohol production by CO hydrogenation over potassium promoted molybdenum sulfide[J]. Appl Catal B: Environ,2019,246:232−241. doi: 10.1016/j.apcatb.2019.01.063
    [34] CHOW W L, LUO X, QUEK S Q, et al. Evolution of Raman scattering and electronic structure of ultrathin molybdenum disulfide by oxygen chemisorption[J]. Adv Electron Mater,2015,1(1/2):1400037. doi: 10.1002/aelm.201400037
    [35] LI H, ZHANG Q, YAP C C R, et al. From bulk to monolayer MoS2: evolution of Raman scattering[J]. Adv Funct Mater,2012,22(7):1385−1390. doi: 10.1002/adfm.201102111
    [36] BENOIST L, GONBEAU D, PFISTER-GUILLOUZO G, et al. X-ray photoelectron spectroscopy characterization of amorphous molybdenum oxysulfide thin films[J]. Thin Solid Films,1995,258:110−114.
    [37] LIU C, VIRGINIE M, GRIBOVAL-CONSTANT A, et al. Potassium promotion effects in carbon nanotube supported molybdenum sulfide catalysts for carbon monoxide hydrogenation[J]. Catal Today,2016,261:137−145. doi: 10.1016/j.cattod.2015.07.003
    [38] QIU L, XU G. Peak overlaps and corresponding solutions in the X-ray photoelectron spectroscopic study of hydrodesulfurization catalysts[J]. Appl Surf Sci,2010,256(11):3413−3417. doi: 10.1016/j.apsusc.2009.12.043
    [39] FAN Y, XIAO H, SHI G, et al. Citric acid-assisted hydrothermal method for preparing NiW/USY-Al2O3 ultradeep hydrodesulfurization catalysts[J]. J Catal,2011,279(1):27−35. doi: 10.1016/j.jcat.2010.12.014
    [40] HARRIS S, CHIANELLI R R. Catalysis by transition metal sulfides: a theoretical and experimental study of the relation between the synergic systems and the binary transition metal sulfides[J]. J Catal,1986,98:17−31. doi: 10.1016/0021-9517(86)90292-7
    [41] GANDUBERT A D, KREBS E, LEGENS C, et al. Optimal promoter edge decoration of CoMoS catalysts: a combined theoretical and experimental study[J]. Catal Today,2008,130(1):149−159. doi: 10.1016/j.cattod.2007.06.041
    [42] HAN W, YUAN P, FAN Y, et al. Preparation of supported hydrodesulfurization catalysts with enhanced performance using Mo-based inorganic-organic hybrid nanocrystals as a superior precursor[J]. J Mater Chem,2012,22:25340−25353. doi: 10.1039/c2jm34979e
    [43] NIKULSHIN P A, ISHUTENKO D I, MOZHAEV A A, et al. Effects of composition and morphology of active phase of CoMo/Al2O3 catalysts prepared using Co2Mo10-heteropolyacid and chelating agents on their catalytic properties in HDS and HYD reactions[J]. J Catal,2014,312:152−169. doi: 10.1016/j.jcat.2014.01.014
    [44] LI D, YANG C, LI W, et al. Ni/ADM: A high activity and selectivity to C2+OH catalyst for catalytic conversion of synthesis gas to C1-C5 mixed alcohols[J]. Top Catal,2005,32:233−239. doi: 10.1007/s11244-005-2901-x
    [45] ANDERSSON R, BOUTONNET M, JÄRÅS S. On-line gas chromatographic analysis of higher alcohol synthesis products from syngas[J]. J Chromatogr A,2012,1247:134−145. doi: 10.1016/j.chroma.2012.05.060
    [46] DAAGE M, CHIANELLI R R. Structure-function relations in molybdenum sulfide catalysts: The "Rim-Edge" model[J]. J Catal,1994,149:414−427. doi: 10.1006/jcat.1994.1308
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  192
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20
  • 修回日期:  2023-04-18
  • 录用日期:  2023-04-18
  • 网络出版日期:  2023-05-06
  • 刊出日期:  2024-01-09

目录

    /

    返回文章
    返回