留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焦油模型化合物与铁基氧载体的反应特性研究

胡东海 曹国强 杜梅杰 黄戒介 赵建涛 李春玉 房倚天

胡东海, 曹国强, 杜梅杰, 黄戒介, 赵建涛, 李春玉, 房倚天. 焦油模型化合物与铁基氧载体的反应特性研究[J]. 燃料化学学报(中英文), 2023, 51(12): 1739-1750. doi: 10.19906/j.cnki.JFCT.2023037
引用本文: 胡东海, 曹国强, 杜梅杰, 黄戒介, 赵建涛, 李春玉, 房倚天. 焦油模型化合物与铁基氧载体的反应特性研究[J]. 燃料化学学报(中英文), 2023, 51(12): 1739-1750. doi: 10.19906/j.cnki.JFCT.2023037
HU Dong-hai, CAO Guo-qiang, DU Mei-jie, HUANG Jie-jie, ZHAO Jian-tao, LI Chun-yu, FANG Yi-tian. Study on the reaction characteristics of tar model compounds with an Fe-based oxygen carrier[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1739-1750. doi: 10.19906/j.cnki.JFCT.2023037
Citation: HU Dong-hai, CAO Guo-qiang, DU Mei-jie, HUANG Jie-jie, ZHAO Jian-tao, LI Chun-yu, FANG Yi-tian. Study on the reaction characteristics of tar model compounds with an Fe-based oxygen carrier[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1739-1750. doi: 10.19906/j.cnki.JFCT.2023037

焦油模型化合物与铁基氧载体的反应特性研究

doi: 10.19906/j.cnki.JFCT.2023037
基金项目: 中国科学院战略重点研究计划(XDA29050600)资助
详细信息
    通讯作者:

    E-mail: licy@sxicc.ac.cn

  • 中图分类号: TK6

Study on the reaction characteristics of tar model compounds with an Fe-based oxygen carrier

Funds: The project was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA29050600).
  • 摘要: 本研究以生物质/煤的焦油模型化合物(TMCs)为研究对象,在两阶段固定床实验上探究了铁基氧载体(70%Fe2O3/30%Al2O3)对TMCs的转化特性,考察了不同TMCs的反应性及其转化的影响因素。研究发现,TMCs与氧载体的反应活性为:苯酚>蒽>萘,且苯酚转化生成积炭的比例最多(64%),而萘转化生成积炭的比例最少(40%);氧载体与萘的反应程度相对较高,但容易导致氧载体的烧结。此外,积炭表征显示萘生成的积炭在三种TMCs中具有最高的稳定性。增加氧载体的用量和提高反应温度不仅有利于萘和蒽的进一步转化,而且能够增加气相产物中CO2的分率。由于苯酚分子具有较高的反应活性及较强的裂解效果导致其转化率随氧载体用量和反应温度的增加变化较小,然而,较高的反应温度(1000 ℃)导致焦油发生严重的裂解现象并产生大量积炭。三次循环实验结果表明与萘反应的氧载体失活最为严重。
  • FIG. 2801.  FIG. 2801.

    FIG. 2801.  FIG. 2801.

    图  1  实验装置示意图

    Figure  1  Schematic of the experimental set-up

    图  2  不同TMCs的转化率及产物分布

    Figure  2  Conversion and product distribution of different TCMs (t=800 ℃,φ=0.75)

    图  3  与相关TMCs反应后氧载体的XRD谱图

    Figure  3  XRD diagram of oxygen carrier after reaction with relevant TMCs (t=800 ℃, φ=0.75)

    图  4  与相关TMCs反应前后氧载体的SEM照片

    Figure  4  SEM images of the oxygen carrier before and after reaction with relevant TMCs: (a) Fresh oxygen carriers; (b) Reacted with phenol; (c) Reacted with naphthalene; (d) Reacted with anthracene

    图  5  与不同TMCs反应后氧载体的拉曼光谱谱图

    Figure  5  Raman spectra of oxygen carrier reacted with different TMCs

    图  6  与不同TMCs反应后氧载体的(a)升温曲线和(b)失重速率

    Figure  6  Temperature ramping curve (a) and weight loss rate (b) of oxygen carrier after reaction with different TMCs

    图  7  不同反应条件下TCM的转化率

    Figure  7  TMCs conversion under different reaction conditions

    图  8  不同反应条件下TCMs的产物分布

    Figure  8  Product distribution of TCMs under different reaction conditions: (a) Phenol; (b) Naphthalene; (c) Anthracene

    图  9  不同反应条件下晶格氧的利用率

    Figure  9  Utilization rate of lattice oxygen under different reaction conditions

    图  10  不同循环次数下相关TMCs的转化率和产物分布

    Figure  10  Conversion and product distribution of related TMCs for different cycle times (t=900 ℃, φ=1.5)

    表  1  在两阶段固定床反应器中进行的实验操作参数

    Table  1  Summary of experimental operating parameters carried out in the 2-stage fixed bed reactor

    Operating condition1st stage2st stage
    FeedstockTMCsOC: 70% Fe2O3/30% Al2O3
    (0.3−0.8 mm)
    Temperature /℃200800, 900, 1000
    Oxygen/carbon ratio (φ)φ= 0.75, 1.5
    (Corresponding weight of OC = 1.25, 2.5 g)
    (Corresponding bed height of OC = 0.25, 0.5 cm)
    Superficial velocity
    Weight hourly space velocity (WHSV)
    0.007 m/s
    0.047–0.093 h−1
    下载: 导出CSV

    表  2  与相关TMCs反应前后氧载体的比表面积及孔分布

    Table  2  Specific surface area and pore distribution of oxygen carriers before and after reaction with relevant TMCs

    SampleSpecific surface area
    /(m2·g−1)
    Total pore volume
    /(cm3·g−1)
    Pore size distribution
    micropore
    (<2 nm,%)
    mesopore
    (2–50 nm,%)
    macropore
    (>50 nm,%)
    Fresh oxygen carrier11.30.0620.7574.7124.54
    Reacted with phenol12.50.0551.3475.3823.28
    Reacted with naphthalene9.70.0500.6575.2824.07
    Reacted with anthracene10.40.0580.7073.8625.44
    下载: 导出CSV

    表  3  热重实验前后氧载体样品中碳的定量分析

    Table  3  Quantitative analysis of carbon in oxygen carrier before and after thermogravimetric test

    Phenol w/%Naphthalene w/%Anthracene w/%
    Before reaction2.370.791.89
    After reaction0.370.220.29
    下载: 导出CSV

    表  4  TMCs在不同反应条件下的焦油产物

    Table  4  Tar products of TMCs under different reaction conditions

    TMCsReaction productsPeak area of various tar component ( × 106
    φ = 0.75 (t=800 ℃)φ = 1.5 (t=800 ℃)φ = 1.5 (t=900 ℃)φ = 1.5 (t=1000 ℃)
    Phenolbenzene14.45.010.230.11
    toluene0.150.09
    styrene0.140.10
    naphthalene2.952.481.23
    Naphthalenebenzene7.797.763.310.26
    toluene0.150.09
    styrene0.210.45
    naphthalene2582241210.03
    1,1'-binaphthalene3.335.583.34
    Anthracenebenzene3.083.964.65
    toluene0.170.640.93
    styrene0.120.410.52
    naphthalene2.973.674.21
    anthracene67.746.517.4
    下载: 导出CSV
  • [1] DANESHVAR E, WICKER R J, SHOW P L, BHATNAGAR A. Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization-A review[J]. Chem Eng J,2022,427:15.
    [2] TAN Y T, NOOKUEA W, LI H L, THORIN E, YAN J Y. Property impacts on Carbon Capture and Storage (CCS) processes: A review[J]. Energy Convers Manag,2016,118:204−222. doi: 10.1016/j.enconman.2016.03.079
    [3] ADANEZ J, ABAD A. Chemical-looping combustion: Status and research needs[J]. Proc Combust Inst,2019,37(4):4303−4317. doi: 10.1016/j.proci.2018.09.002
    [4] ADANEZ J, ABAD A, MENDIARA T, GAYAN P, DE DIEGO L F, GARCIA-LABIANO F. Chemical looping combustion of solid fuels[J]. Progr Energy Combust Sci,2018,65:6−66. doi: 10.1016/j.pecs.2017.07.005
    [5] JIANG S C, DING W X, ZHAO K, HUANG Z, WEI G Q, FENG Y Y, LV Y J, HE F. Enhanced chemical looping oxidative coupling of methane by Na-doped LaMnO3 redox catalysts[J]. Fuel,2021,299:12.
    [6] WANG B W, ZHAO H B, ZHENG Y, LIU Z H, YAN R, ZHENG C G. Chemical looping combustion of a Chinese anthracite with Fe2O3-based and CuO-based oxygen carriers[J]. Fuel Process Technol,2012,96:104−115. doi: 10.1016/j.fuproc.2011.12.030
    [7] SAHA C, BHATTACHARYA S. Comparison of CuO and NiO as oxygen carrier in chemical looping combustion of a Victorian brown coal[J]. Int J Hydrogen Energy,2011,36(18):12048−12057. doi: 10.1016/j.ijhydene.2011.06.065
    [8] HUANG Z, DENG Z B, HE F, CHEN D Z, WEI G Q, ZHAO K, ZHENG A Q, ZHAO Z L, LI H B. Reactivity investigation on chemical looping gasification of biomass char using nickel ferrite oxygen carrier[J]. Int J Hydrogen Energy,2017,42(21):14458−14470. doi: 10.1016/j.ijhydene.2017.04.246
    [9] KOBAYASHI N, FAN L S. Biomass direct chemical looping process: A perspective[J]. Biomass Bioenerg,2011,35(3):1252−1262.
    [10] JOSHI R K, SHAH V, FAN L S. Acetic acid production using calcium ferrite-assisted chemical looping gasification of petroleum coke with in situ sulfur capture[J]. Energy Fuels,2020,34(12):16560−16571. doi: 10.1021/acs.energyfuels.0c03408
    [11] HU D H, HUANG J J, ZHAO J T, WANG Z Q, YU Z L, XIAO H C, BAI H C, LI C Y, FANG Y T. Reaction characteristics of Shenmu coal pyrolysis volatiles with an iron-based oxygen carrier in a two-stage fixed-bed reactor[J]. Fuel Process Technol,2022,235:9.
    [12] MENDIARA T, JOHANSEN J M, UTRILLA R, GERALDO P, JENSEN A D, GLARBORG P. Evaluation of different oxygen carriers for biomass tar reforming (I): Carbon deposition in experiments with toluene[J]. Fuel,2011,90(3):1049−1060. doi: 10.1016/j.fuel.2010.11.028
    [13] CORBELLA B M, DE DIEGO L F, GARCIA-LABIANO F, ADANEZ J, PALACIOS J M. Characterization study and five-cycle tests in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane[J]. Environ Sci Technol,2005,39(15):5796−5803. doi: 10.1021/es048015a
    [14] ZHAO X, ZHOU H, SIKARWAR V S, ZHAO M, PARK A H A, FENNELL P S, SHEN L H, FAN L S. Biomass-based chemical looping technologies: the good, the bad and the future[J]. Energy Environ Sci,2017,10(9):1885−1910. doi: 10.1039/C6EE03718F
    [15] BOOT-HANDFORD M E, FLORIN N, FENNELL P S. Investigations into the effects of volatile biomass tar on the performance of Fe-based CLC oxygen carrier materials[J]. Environ Res Lett,2016,11(11):10.
    [16] WANG C P, YAN H, YU Y B, LIANG W Z, YUAN S R, CUI W W, WANG F Y, BAI H C, HU X D. Chemical looping reforming of coal Tar vapor on the surface of CaO-modified Fe-based oxygen carrier[J]. Energy Fuels,2020,34(7):8534−8542. doi: 10.1021/acs.energyfuels.0c00839
    [17] WEI G Q, HUANG J, FAN Y Y, HUANG Z, ZHENG A Q, HE F, MENG J G, ZHANG D Y, ZHAO K, ZHAO Z L, LI H B. Chemical looping reforming of biomass based pyrolysis gas coupling with chemical looping hydrogen by using Fe/Ni/Al oxygen carriers derived from LDH precursors[J]. Energy Convers Manag,2019,179:304−313. doi: 10.1016/j.enconman.2018.10.065
    [18] NAM H, WANG Z H, SHANMUGAM S R, ADHIKARI S, ABDOULMOUMINE N. Chemical looping dry reforming of benzene as a gasification tar model compound with Ni- and Fe-based oxygen carriers in a fluidized bed reactor[J]. Int J Hydrogen Energy,2018,43(41):18790−18800. doi: 10.1016/j.ijhydene.2018.08.103
    [19] HUANG Z, DENG Z B, FEN Y H, CHEN T J, CHEN D Z, ZHENG A Q, WEI G Q, HE F, ZHAO Z L, WU J H, LI H B. Exploring the conversion mechanisms of toluene as a biomass tar model compound on NiFe2O4 oxygen carrier[J]. ACS Sustainable Chem Eng,2019,7(19):16539−16548. doi: 10.1021/acssuschemeng.9b03831
    [20] HUANG Z, ZHENG A Q, DENG Z B, WEI G Q, ZHAO K, CHEN D Z, HE F, ZHAO Z L, LI H B, LI F X. In-situ removal of toluene as a biomass tar model compound using NiFe2O4 for application in chemical looping gasification oxygen carrier[J]. Energy,2020,190:12.
    [21] ZENG J M, HU J W, QIU Y, ZHANG S, ZENG D W, XIAO R. Multi-function of oxygen carrier for in-situ tar removal in chemical looping gasification: Naphthalene as a model compound[J]. Appl Energy,2019,253:8.
    [22] GREWAL A, ABBEY L, GUNUPURU L R. Production, prospects and potential application of pyroligneous acid in agriculture[J]. Anal Appl Pyrolysis,2018,135:152−159. doi: 10.1016/j.jaap.2018.09.008
    [23] LIN Y, WANG H T, HUANG Z, LIU M, WEI G Q, ZHAO Z L, LI H B, FANG Y T. Chemical looping gasification coupled with steam reforming of biomass using NiFe2O4: Kinetic analysis of DAEM-TI, thermodynamic simulation of OC redox, and a loop test[J]. Chem Eng J,2020,395:12.
    [24] LIU T, YU Z L, LI G, GUO S, SHAN J, LI C Y, FANG Y T. Performance of potassium-modified Fe2O3/Al2O3 oxygen carrier in coal-direct chemical looping hydrogen generation[J]. Int Hydrogen Energy,2018,43(42):19384−19395. doi: 10.1016/j.ijhydene.2018.08.089
    [25] LIND F, SEEMANN M, THUNMANI H. Continuous catalytic tar reforming of biomass derived raw gas with simultaneous catalyst regeneration[J]. Ind Eng Chem Res,2011,50(20):11553−11562. doi: 10.1021/ie200645s
    [26] MENG J Q, ZHAO Z L, WANG X B, CHEN J, ZHENG A Q, HUANG Z, WEI G Q, LI H B. Steam reforming and carbon deposition evaluation of phenol and naphthalene used as tar model compounds over Ni and Fe olivine-supported catalysts[J]. J Energy Inst,2019,92(6):1765−1778. doi: 10.1016/j.joei.2018.12.004
    [27] CHEN B, SHI Z M, JIANG S J, TIAN H. Catalytic cracking mechanisms of tar model compounds[J]. J Central South Univ,2016,23(12):3100−3107. doi: 10.1007/s11771-016-3375-7
    [28] LI Q W, YAN H, ZHANG J, LIU Z F. Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition[J]. Carbon,2004,42(4):829−835. doi: 10.1016/j.carbon.2004.01.070
    [29] MA S W, CHEN S Y, SOOMRO A, XIANG W G. Effects of supports on hydrogen production and carbon deposition of Fe-based oxygen carriers in chemical looping hydrogen generation[J]. Int J Hydrogen Energy,2017,42(16):11006−11016. doi: 10.1016/j.ijhydene.2017.02.132
    [30] ROBERTSON J. Diamond-like amorphous carbon[J]. Mater Sci Eng: R-Rep,2022,37(4/6):129−281.
    [31] HUANG X, WANG X J, FAN M H, WANG Y G, ADIDHARMA H, GASEM K A M, RADOSZ M. A cost-effective approach to reducing carbon deposition and resulting deactivation of oxygen carriers for improvement of energy efficiency and CO2 capture during methane chemical-looping combustion[J]. Appl Energy,2017,193:381−392. doi: 10.1016/j.apenergy.2017.02.059
    [32] SPRAGG J, MAHMUD T, DUPONT V. Hydrogen production from bio-oil: A thermodynamic analysis of sorption-enhanced chemical looping steam reforming[J]. Int J Hydrogen Energy,2018,43(49):22032−22045. doi: 10.1016/j.ijhydene.2018.10.068
    [33] ZHU J, WANG W, LIAN S J, HUA X N, XIA Z. Stepwise reduction kinetics of iron-based oxygen carriers by CO/CO2 mixture gases for chemical looping hydrogen generation[J]. J Mater Cycles Waste Manag,2017,19(1):453−462. doi: 10.1007/s10163-015-0443-2
    [34] WANG S, SONG T, YIN S Y, HARTGE E U, DYMALA T, SHEN L H, HEINRICH S, WERTHER J. Syngas, tar and char behavior in chemical looping gasification of sawdust pellet in fluidized bed[J]. Fuel,2020,270:11.
    [35] LINDERHOLM C, MATTISSON T, LYNGFELT A. Long-term integrity testing of spray-dried particles in a 10-kW chemical-looping combustor using natural gas as fuel[J]. Fuel,2009,88(11):2083−2096. doi: 10.1016/j.fuel.2008.12.018
    [36] SONG H B, WANG W, SUN J C, WANG X H, ZHANG X H, CHEN S, PEI C L, ZHAO Z J. Chemical looping oxidative propane dehydrogenation controlled by oxygen bulk diffusion over FeVO4 oxygen carrier pellets[J]. Chin J Chem Eng,2023,53:409−420. doi: 10.1016/j.cjche.2022.10.006
    [37] MIN Z H, YIMSIRI P, ASADULLAH M, ZHANG S, LI C Z. Catalytic reforming of tar during gasification. Part II. Char as a catalyst or as a catalyst support for tar reforming[J]. Fuel,2011,90(7):2545−2552. doi: 10.1016/j.fuel.2011.03.027
    [38] HUANG Z, HE F, ZHENG A Q, ZHAO K, CHANG S, ZHAO Z L, LI H B. Synthesis gas production from biomass gasification using steam coupling with natural hematite as oxygen carrier[J]. Energy,2013,53:244−251. doi: 10.1016/j.energy.2013.02.068
    [39] LI C S, SUZUKI K. Tar property, analysis, reforming mechanism and model for biomass gasification-An overview[J]. Renewable Sustainable Energy Rev,2009,13(3):594−604. doi: 10.1016/j.rser.2008.01.009
    [40] XU R Y, ZHU F S, ZHANG H, RUYA P M, KONG X Z, LI L, LI X D. Simultaneous removal of toluene, naphthalene, and phenol as tar surrogates in a rotating gliding arc discharge reactor[J]. Energy Fuels,2020,34(2):2045−2054. doi: 10.1021/acs.energyfuels.9b03529
    [41] SUN Z ZHANG X H, LI H F, LIU T, SANG S E, CHEN S Y, DUAN L B, ZENG L, XIANG W G, GONG J L. Chemical looping oxidative steam reforming of methanol: A new pathway for auto-thermal conversion[J]. Appl Catal B: Environ,2020,269:12.
    [42] KOIKE M, LI D, WATANABE H, NAKAGAWA Y, TOMISHIGE K. Comparative study on steam reforming of model aromatic compounds of biomass tar over Ni and Ni-Fe alloy nanoparticles[J]. Appl Catal A: Gen,2015,506:151−162. doi: 10.1016/j.apcata.2015.09.007
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  286
  • HTML全文浏览量:  97
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-16
  • 修回日期:  2023-04-10
  • 录用日期:  2023-04-19
  • 网络出版日期:  2023-05-06
  • 刊出日期:  2023-12-05

目录

    /

    返回文章
    返回