留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cr-WO3超细纳米线用于苯乙烯选择性氧化制苯甲醛

王会香 李鹏慧 吕宝亮

王会香, 李鹏慧, 吕宝亮. Cr-WO3超细纳米线用于苯乙烯选择性氧化制苯甲醛[J]. 燃料化学学报(中英文), 2023, 51(12): 1814-1824. doi: 10.19906/j.cnki.JFCT.2023038
引用本文: 王会香, 李鹏慧, 吕宝亮. Cr-WO3超细纳米线用于苯乙烯选择性氧化制苯甲醛[J]. 燃料化学学报(中英文), 2023, 51(12): 1814-1824. doi: 10.19906/j.cnki.JFCT.2023038
WANG Hui-xiang, LI Peng-hui, LÜ Bao-liang. Selective oxidation of styrene to benzaldehyde with Cr-WO3 ultrafine nanowires[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1814-1824. doi: 10.19906/j.cnki.JFCT.2023038
Citation: WANG Hui-xiang, LI Peng-hui, LÜ Bao-liang. Selective oxidation of styrene to benzaldehyde with Cr-WO3 ultrafine nanowires[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1814-1824. doi: 10.19906/j.cnki.JFCT.2023038

Cr-WO3超细纳米线用于苯乙烯选择性氧化制苯甲醛

doi: 10.19906/j.cnki.JFCT.2023038
基金项目: 国家自然科学基金(21972158),中国科学院洁净能源创新研究院-榆林学院联合基金(2021017),煤炭与绿色化工高效利用国家重点实验室基金(2021-K10),山西省优秀博士科研启动基金(SQ2019006)和专利转化专项基金(202202093)资助。
详细信息
    通讯作者:

    E-mail: lvbl@sxnu.edu.cn

  • 中图分类号: O643

Selective oxidation of styrene to benzaldehyde with Cr-WO3 ultrafine nanowires

Funds: The project was supported by the National Natural Science Foundation of China (21972158), Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (2021017), Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2021-K10), Doctoral Research Initiation Fund of Shanxi Province (SQ2019006) and Patent Conversion Foundation of Shanxi Province (202202093)
  • 摘要: 本工作在水热法制备WO3过程中直接引入Cr3 + 作为改性剂,其在非(001)晶面的选择性吸附,实现了WO3形貌从纳米棒到[001]取向超细纳米线(UNWs)的转变,最终所得Cr-WO3 UNWs催化剂的比表面积可达297 m2/g。此外,Cr3 + 的晶格掺杂和减缓结晶作用有效增加了WO3表面氧空位(L酸位点)浓度。在苯乙烯选择性氧化制苯甲醛反应中,最佳条件下(70 ℃、r(nH2O2/n苯乙烯)=2.0、6 h、m=30 mg),Cr-WO3 UNWs分别将苯乙烯转化率和苯甲醛选择性从单一WO3纳米棒的19.0%和49.6%提升到72.0%和84.6%,其催化性能的提升归结于以下两点:第一,超大比表面积可提供充足的反应活性位点;第二,L酸位点可将H2O2活化为W-OOH活性物种,L酸位点浓度的增加有利于更多活性物种的产生。
  • FIG. 2808.  FIG. 2808.

    FIG. 2808.  FIG. 2808.

    图  1  Cr-WO3和纯WO3样品的SEM照片

    Figure  1  SEM images of ((a), (b)) Cr-WO3 and ((c), (d)) pure WO3 samples

    图  2  Cr-WO3和纯WO3的XRD谱图

    Figure  2  XRD patterns of Cr-WO3 UNWs and WO3 NRs

    图  3  Cr-WO3和WO3样品的TEM、HRTEM和SAED照片以及Cr-WO3的EDX mapping图

    Figure  3  TEM, HRTEM images and SAED patterns of ((a)−(c)) Cr-WO3 UNWs and ((d)−(f)) WO3 NRs; ((g)−(j)) EDX mapping images of Cr-WO3 UNWs

    图  4  样品的Raman谱图

    Figure  4  Raman spectra of Cr-WO3 UNWs and WO3 NRs

    图  5  Cr-WO3和WO3的XPS全谱、Cr 2p、W 4f和O 1s谱图

    Figure  5  (a) Full XPS spectra of samples; (b) Cr 2p of Cr-WO3 UNWs; (c) W 4f and (d) O 1s of Cr-WO3 UNWs and WO3 NRs

    图  6  样品在70 ℃下的Py-FTIR吸收光谱谱图

    Figure  6  Py-FTIR spectra of Cr-WO3 UNWs, WO3 NRs and Cr2WO6 NPs at 70 ℃

    图  7  样品的N2吸附-脱附曲线及孔分布

    Figure  7  N2 adsorption/desorption isotherms and corresponding pore size distributions (inset e) of (a) Cr-WO3 UNWs, (b) WO3 NRs and (c) Cr2WO6 NPs

    图  8  Cr-WO3 UNWs催化苯乙烯制苯甲醛反应的影响因素

    Figure  8  Influence factors of styrene to benzaldehyde on Cr-WO3 UNWs (a): molar ratio r of H2O2 to styrene; (b): reaction temperature; (c): reaction time; (d): catalyst dosage

    图  9  H2O2效率和不同H2O2用量下的转化率

    Figure  9  (a) H2O2 efficiency and (b) conversion increment of styrene under different H2O2 dosage

    图  10  不同样品作用下的苯乙烯转化率和苯甲醛选择性

    Figure  10  (a) Conversion of styrene and (b) selectivity of benzaldehyde under different catalysts

    图  11  10 mg用量时WO3和Cr-WO3的性能比较

    Figure  11  (a) Conversion, selectivity and (b) BD yield of WO3 NRs and Cr-WO3 UNWs with 10 mg dosage

    图  12  催化剂的循环性能

    Figure  12  The cycling performance of Cr-WO3 UNWs

    图  13  苯乙烯在催化剂上可能的反应过程

    Figure  13  The possible oxidation reaction process of styrene on the Cr-WO3 UNWs

  • [1] ANDAS J, EKHBAL S H, ALI T H. MCM-41 modified heterogeneous catalysts from rice husk for selective oxidation of styrene into benzaldehyde[J]. Environ Technol Innovation, 2021, 21: 101308.
    [2] FLORES J G, DÍAZ-GARCÍA M, IBARRA I A, AGUILAR-PLIEGO J, SANCHEZ-SANCHEZ M. Sustainable M-MOF-74 (M=Cu, Co, Zn) prepared in methanol as heterogeneous catalysts in the synthesis of benzaldehyde from styrene oxidation[J]. J Solid State Chem, 2021, 298: 122151 (p8).
    [3] 王彬, 房克功, 陈建刚, 孙予罕. VOx/SBA-15催化剂上甲苯气相部分氧化[J]. 燃料化学学报,2008,36(1):94−98.

    WANG Shan, FANG Ke-gong, CHEN Jian-gang, SUN Yu-han. Partial oxidation of toluene over VOx/SBA-15 catalyst[J]. J Fuel Chem Technol,2008,36(1):94−98.
    [4] GUAN X, DUAN C D, WANG H X, LU B, ZHAO J X, CAI Q H. Tuneable oxidation of styrene to benzaldehyde and benzoic acid over Co/ZSM-5[J]. New J Chem,2021,45(38):18192−18201. doi: 10.1039/D1NJ03145G
    [5] 张旭, 张利雄, 徐南平. 苯乙烯氧化合成环氧苯乙烷和苯甲醛催化剂的研究进展[J]. 石油化工,2009,38(2):215−220. doi: 10.3321/j.issn:1000-8144.2009.02.020

    ZHANG Xu, ZHANG Li-xiong, XU Nan-ping. Advances in development of catalysts for selective oxidation of styrene to styrene oxide and benzaldehyde[J]. Petrochem Technol,2009,38(2):215−220. doi: 10.3321/j.issn:1000-8144.2009.02.020
    [6] ANDRADE M A, MARTINS L M D R S. Selective styrene oxidation to benzaldehyde over recently developed heterogeneous catalysts[J]. Molecules, 2021, 26(6): 1680 (p38).
    [7] YANG X J, WANG H X, LI S N, LU B, ZHAO J X, CAI Q H. Fe3O4/g-C3N4-CeOx fabricated by in situ-reduction towards solvent-free oxidation of styrene to benzaldehyde[J]. Colloids Surf A, 2021, 616: 126309.
    [8] GUIN D, BARUWATI B, MANORAMA S V. A simple chemical synthesis of nanocrystalline AFe2O4 (A=Fe, Ni, Zn): An efficient catalyst for selective oxidation of styrene[J]. J Mol Catal A: Chem, 2005, 242(1/2): 26–31.
    [9] PARDESHI S K, PAWAR R Y. Optimization of reaction conditions in selective oxidation of styrene over fine crystallite spinel-type CaFe2O4 complex oxide catalyst[J]. Mater Res Bull,2010,45(5):609−615. doi: 10.1016/j.materresbull.2010.01.011
    [10] PARDESHI S K, PAWAR R Y. SrFe2O4 complex oxide an effective and environmentally benign catalyst for selective oxidation of styrene[J]. J Mol Catal A: Chem, 2011, 334(1/2): 35–43.
    [11] CONG S, GENG F X, ZHAO Z G. Tungsten oxide materials for optoelectronic applications[J]. Adv Mater,2016,28(47):10518−10528. doi: 10.1002/adma.201601109
    [12] LONG H W, ZENG W, ZHANG H. Synthesis of WO3 and its gas sensing: A review[J]. J Mater Sci: Mater in Electron,2015,26(7):4698−4707. doi: 10.1007/s10854-015-2896-4
    [13] LWIN S, WACHS I E. Olefin metathesis by supported metal oxide catalysts[J]. ACS Catal,2014,4(8):2505−2520. doi: 10.1021/cs500528h
    [14] GOYAL R, SARKAR B, SAMEER S, BAG A, BORDOLOI A. Ag and WOx nanoparticles embedded in mesoporous SiO2 for cyclohexane oxidation[J]. ACS Appl Nano Mater,2019,2(9):5989−5999. doi: 10.1021/acsanm.9b01430
    [15] YAN W J, ZHANG G Y, YAN H, LIU Y B, CHEN X B, FENG X, JIN X, YANG C H. Liquid-phase epoxidation of light olefins over W and Nb nanocatalysts[J]. ACS Sustainable Chem Eng,2018,6(4):4423−4452. doi: 10.1021/acssuschemeng.7b03101
    [16] 李伟, 迟克彬, 马怀军, 刘浩, 曲炜, 田志坚. 载体对Pt/WO3-ZrO2催化临氢异构反应性能的影响[J]. 燃料化学学报,2017,45(3):329−336.

    LI Wei, CHI Ke-bin, MA Huai-jun, LIU Hao, QU Wei, TIAN Zhi-jian. Effect of supports on the catalytic performance of Pt/WO3-ZrO2 catalysts for hydroisomerization[J]. J Fuel Chem Technol,2017,45(3):329−336.
    [17] KANAN S M, LU Z, COX J K, BERNHARDT G, TRIPP C P. Identification of surface sites on monoclinic WO3 powders by infrared spectroscopy[J]. Langmuir,2002,18(5):1707−1712. doi: 10.1021/la011428u
    [18] XING X Y, WANG H X, SHI J, LI P H, REN J Z, WANG L C, ZHANG J L, LIU Z, LV B L. Heterogeneous catalyst with oxygen vacancies and deficient Brönsted acid for epoxidation of 1-hexene[J]. Catal Lett,2022,153:1180−1192.
    [19] 余勇, 刘士军, 李洁, 陈启元. 氧化钨介孔材料的制备与表征[J]. 物理化学学报,2009,25(9):1890−1894. doi: 10.3866/PKU.WHXB20090914

    YU Yong, LIU Shi-jun, LI Jie, CHEN Qi-yuan. Preparation and characterization of mesoporous tungsten oxides[J]. Acta Phys-Chim Sin,2009,25(9):1890−1894. doi: 10.3866/PKU.WHXB20090914
    [20] LI P H, GAO J H, SHI J, WANG H X, XING X Y, REN J Z, MENG Y, WANG L C, LV B L. Insights into the effect of oxygen vacancies on the epoxidation of 1-hexene with hydrogen peroxide over WO3-x/SBA-15[J]. Catal Sci Technol,2022,12(22):6827−6837. doi: 10.1039/D2CY01123A
    [21] 邢向英, 王会香, 王连成, 吕宝亮. Co2 + 调控WOx表面Brönsted 酸和空位含量用于提高1-己烯环氧化性能[J]. 燃料化学学报,2022,50(11):1480−1490.

    XING Xiang-ying, WANG Hui-xiang, WANG Lian-cheng, LÜ Bao-liang. Regulation of Co2 + cations on the content of Brönsted acid site and oxygen vacancy of WOx to improve the epoxidation performance of 1-hexene[J]. J Fuel Chem Technol,2022,50(11):1480−1490.
    [22] SHI J, XING X Y, WANG H X, GE L, SUN H Z LV B L. Oxygen vacancy enriched Cu-WO3 hierarchical structures for the thermal decomposition of ammonium perchlorate[J]. Inorg Chem Front,2022,9(1):136−145. doi: 10.1039/D1QI01027A
    [23] 大连理工大学无机化学教研室. 无机化学第五版[M]. 北京: 高等教育出版社, 2006: 564–570.

    Department of Inorganic Chemistry, Dalian University of Technology. Inorganic Chemistry with Fifth Edition[M]. Beijing: Higher Education Press, 2006: 564–570.
    [24] WANG H X, TANG M X, SHI F L, DING R M, WANG L C, WU J B, LI X K, LIU Z, LV B L. Amorphous Cr2WO6-modified WO3 nanowires with a large specific surface area and rich Lewis acid sites: A highly efficient catalyst for oxidative desulfurization[J]. ACS Appl Mater Interfaces,2020,12(34):38140−38152. doi: 10.1021/acsami.0c10118
    [25] HA J, MURALIDHARAN P, KIM D K. Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts[J]. J Alloys Compd, 2009, 475(1/2): 446–451.
    [26] MU W J, LI M, LI X L, MA Z P, ZHANG R, YU Q H LV K, XIE X, HE J H, WEI H Y, JIAN Y. Guanidine sulfate-assisted synthesis of hexagonal WO3 nanoparticles with enhanced adsorption properties[J]. Dalton Trans,2015,44(16):7419−7427. doi: 10.1039/C5DT00103J
    [27] JIMÉNEZ I, CENTENO M A, SCOTTI R, MORAZZONI F, ARBIOL J, CORNET A, MORANTE J R. NH3 interaction with chromium-doped WO3 nanocrystalline powders for gas sensing applications[J]. J Mater Chem,2004,14(15):2412−2420. doi: 10.1039/B400872C
    [28] WANG Y R, LIU B, XIAO S H, WANG X H, SUN L M, LI H, XIE W Y, LI Q H, ZHANG Q, WANG T H. Low-temperature H2S detection with hierarchical Cr-doped WO3 microspheres[J]. ACS Appl Mater Interfaces,2016,8(15):9674−9683. doi: 10.1021/acsami.5b12857
    [29] XIA H J, WANG Y, KONG F H, WANG S R, ZHU B L, GUO X Z, ZHANG J, WANG Y M, WU S H. Au-doped WO3-based sensor for NO2 detection at low operating temperature[J]. Sens Actuators B,2008,134(1):133−139. doi: 10.1016/j.snb.2008.04.018
    [30] SUN J H, GUO J, YE J Y, SONG B J, ZHANG K W, BAI S L, LUO R X, LI D Q, CHEN A F. Synthesis of Sb doping hierarchical WO3 microspheres and mechanism of enhancing sensing properties to NO2[J]. J Alloys Compd,2017,692:876−884. doi: 10.1016/j.jallcom.2016.09.061
    [31] OU G, XU Y S, WEN B, LIN R, GE B H, TANG Y, LIANG Y W, YANG C, HUANG K, ZU D, YU R, CHEN W X, LI J, WU H, LIU L, LI Y D. Tuning defects in oxides at room temperature by lithium reduction[J]. Nat Commun,2018,9(1):1302−1310. doi: 10.1038/s41467-018-03765-0
    [32] LI P X, QU L M, ZHANG C H, REN X B, WANG H X, ZHANG J L, MU Y W, LV B L. Probing into the crystal plane effect on the reduction of α-Fe2O3 in CO by Operando Raman spectroscopy[J]. J Fuel Chem Technol,2021,49(10):1558−1566. doi: 10.1016/S1872-5813(21)60154-8
    [33] KUZNETSOV D A, NAEEM M A, KUMAR P V, ABDALA P M, FEDOROV A, MÜLLER C R. Tailoring lattice oxygen binding in ruthenium pyrochlores to enhance oxygen evolution activity[J]. J Am Chem Soc,2020,142(17):7883−7888. doi: 10.1021/jacs.0c01135
    [34] WANG C Z, YANG S J, CHANG H Z, PENG Y, LI J H. Dispersion of tungsten oxide on SCR performance of V2O5-WO3/TiO2: Acidity, surface species and catalytic activity[J]. Chem Eng J,2013,225:520−527. doi: 10.1016/j.cej.2013.04.005
    [35] FENG B, HOU Z S, WANG X R, HU Y, LI H, QIAO Y X. Selective aerobic oxidation of styrene to benzaldehyde catalyzed by water-soluble palladium(II) complex in water[J]. Green Chem,2009,11(9):1446−1452. doi: 10.1039/b900807a
    [36] HU J L, LI K X, LI W, MA F Y, GUO Y H. Selective oxidation of styrene to benzaldehyde catalyzed by Schiff base-modified ordered mesoporous silica materials impregnated with the transition metal-monosubstituted Keggin-type polyoxometalates[J]. Appl Catal A: Gen, 2009, 364(1/2): 211–220.
    [37] LIU J Y, WANG Z, JIAN P M, JIAN R Q. Highly selective oxidation of styrene to benzaldehyde over a tailor-made cobalt oxide encapsulated zeolite catalyst[J]. J Colloid Interface Sci,2018,517:144−154. doi: 10.1016/j.jcis.2018.01.113
    [38] ZHANGM R, SINGH V, HU X F, MA X Y, LU J K, ZHANG C, WANG J P, NIU J Y. Efficient olefins epoxidation on ultrafine H2O-WOx nanoparticles with spectroscopic evidence of intermediate species[J]. ACS Catal,2019,9(9):7641−7650. doi: 10.1021/acscatal.9b01226
    [39] FRAILE J M, GARCÍA N, MAYORAL J A, SANTOMAURO F G, GUIDOTTI M. Multifunctional catalysis promoted by solvent effects: Ti-MCM41 for a one-pot, four-step, epoxidation-rearrangement-oxidation-decarboxylation reaction sequence on stilbenes and styrenes[J]. ACS Catal,2015,5(6):3552−3561. doi: 10.1021/cs501671a
  • 加载中
图(14)
计量
  • 文章访问数:  318
  • HTML全文浏览量:  114
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-06
  • 修回日期:  2023-04-26
  • 录用日期:  2023-04-26
  • 网络出版日期:  2023-05-06
  • 刊出日期:  2023-12-05

目录

    /

    返回文章
    返回