留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni-MOF/Zn0.5Cd0.5S合成及其光催化废水制氢研究

蒋灶 徐龙君 刘成伦

蒋灶, 徐龙君, 刘成伦. Ni-MOF/Zn0.5Cd0.5S合成及其光催化废水制氢研究[J]. 燃料化学学报(中英文), 2024, 52(1): 97-104. doi: 10.19906/j.cnki.JFCT.2023051
引用本文: 蒋灶, 徐龙君, 刘成伦. Ni-MOF/Zn0.5Cd0.5S合成及其光催化废水制氢研究[J]. 燃料化学学报(中英文), 2024, 52(1): 97-104. doi: 10.19906/j.cnki.JFCT.2023051
JIANG Zao, XU Longjun, LIU Chenglun. Synthesis of Ni-MOF/Zn0.5Cd0.5S and the photocatalytic hydrogen production performance from wastewater[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 97-104. doi: 10.19906/j.cnki.JFCT.2023051
Citation: JIANG Zao, XU Longjun, LIU Chenglun. Synthesis of Ni-MOF/Zn0.5Cd0.5S and the photocatalytic hydrogen production performance from wastewater[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 97-104. doi: 10.19906/j.cnki.JFCT.2023051

Ni-MOF/Zn0.5Cd0.5S合成及其光催化废水制氢研究

doi: 10.19906/j.cnki.JFCT.2023051
基金项目: 国家自然科学基金(52174157)和重庆市中小学生创新人才培养计划(CY220109)资助
详细信息
    通讯作者:

    Tel:13752820583, E-mail:xulj@cqu.edu.cn

  • 中图分类号: O643.36

Synthesis of Ni-MOF/Zn0.5Cd0.5S and the photocatalytic hydrogen production performance from wastewater

Funds: The project was supported by the National Natural Science Foundation of China (52174157) and Innovative Talents Training Program for Chongqing Primary and Secondary School Students (CY220109).
  • 摘要: 为了提升Zn0.5Cd0.5S的光催化产氢性能,采用水热法制备了Ni-MOF改性Zn0.5Cd0.5S复合光催化剂,通过XRD、SEM、TEM、XPS等分析方法对制备样品的结构及光电化学性能进行了表征,并研究了其光催化垃圾渗滤液混合页岩气返排废水制氢的可行性及动力学特征。结果表明,Zn0.5Cd0.5S主要呈现为纳米颗粒状结构,Ni-MOF主要由长约为10 µm、宽约为9 µm的超薄方形片构成,当Ni-MOF与Zn0.5Cd0.5S复合时,Zn0.5Cd0.5S纳米颗粒沉积在Ni-MOF方形片的表面,粒径显著降低,减少了Zn0.5Cd0.5S纳米颗粒的团聚,光吸收范围出现了蓝移,但仍然具有优异的可见光响应能力。质量分数为15%的Ni-MOF/Zn0.5Cd0.5S在垃圾渗滤液混合页岩气返排废水中展现出最优的光催化产氢性能,模拟太阳光照射3 h产氢量达1887 µmol,产氢过程遵从零级反应动力学模型,产氢速率为685.9 µmol/h,约为Zn0.5Cd0.5S的5.7倍。
  • FIG. 2884.  FIG. 2884.

    FIG. 2884.  FIG. 2884.

    图  1  ZCS、Ni-MOF及NMZCS样品的XRD谱图

    Figure  1  XRD patterns of ZCS, Ni-MOF and NMZCS samples

    图  2  样品的SEM及TEM照片

    Figure  2  SEM and TEM images of the samples

    图  3  15NMZCS的XPS谱图

    Figure  3  X-ray photoelectron spectra of 15NMZCS

    (a): full spectrum; (b): Zn 2p; (c): Cd 3d; (d): S 2p; (e): Ni 2p; (f): O 1s; (g): C 1s; (h): N 1s high-resolution spectra.

    图  4  样品的紫外-可见漫反射谱图及禁带宽度

    Figure  4  (a) UV-vis DRS spectra and (b) band gap of samples

    图  5  样品的光致发光光谱、交流阻抗谱及瞬时光电流图

    Figure  5  (a) PL, (b) EIS and (c) TPR of samples

    图  6  NMZCS的光催化产氢曲线及动力学拟合曲线

    Figure  6  Hydrogen production and kinetic fitting curves of NMZCS photocatalyst

    图  7  Ni-MOF的价带谱及NMZCS的光催化产氢机理

    Figure  7  (a) The valence band spectrum of Ni-MOF and (b) photocatalytic mechanism of NMZCS

  • [1] LIU F F, JIN S, XIA Q X, et al. Research progress on construction and energy storage performance of MXene heterostructures[J]. J Energy Chem,2021,62:220−242. doi: 10.1016/j.jechem.2021.03.017
    [2] 申雪然, 冯彩虹, 代政, 等. 电解海水制氢的研究进展[J]. 化工新型材料,2021,49(12):55−60.

    SHEN Xueran, FENG Caihong, DAI Zheng, et al. Progress on hydrogen generation by splitting seawater[J]. New Chem Mater,2021,49(12):55−60.
    [3] XIONG S, TANG R D, GONG D X, et al. Environmentally-friendly carbon nanomaterials for photocatalytic hydrogen production[J]. Chin J Catal, 2022, 43(7): 1719–1748.
    [4] YUE X Z, Yi S S, WANG R W, et al. Synergistic effect based NixCo1-x architected Zn0.75Cd0.25S nanocrystals: An ultrahigh and stable photocatalysts for hydrogen evolution from water splitting[J]. Appl Catal B: Environ,2018,224:17−26. doi: 10.1016/j.apcatb.2017.10.010
    [5] 万晶晶, 张军, 王友转, 等. 海水制氢技术发展现状与展望[J]. 世界科技研究与发展,2022,44(2):172−184.

    (WAN Jingjing, ZHANG Jun, WANG Youzhuan, et al. Development status and prospect of hydrogen generation from seawater[J]. World Sci-Tech R & D,2022,44(2):172−184.
    [6] WAKERLEY D W, KUEHNEL M F, ORCHARD K L, et al. Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst[J]. Nat Energy,2017,2(4):17021. doi: 10.1038/nenergy.2017.21
    [7] JI G Z, XU X Y, YANG H, et al. Enhanced hydrogen production from sawdust decomposition using hybrid-functional Ni-CaO-Ca2SiO4 Materials[J]. Environ Sci Technol,2017,51(19):11484−11492. doi: 10.1021/acs.est.7b03481
    [8] QI S Y, WANG D P, ZHAO Y D, et al. Core-shell g-C3N4@Zn0.5Cd0.5S heterojunction photocatalysts with high photocatalytic activity for the degradation of organic dyes[J]. J Mater Sci: Mater Electron,2019,30(5):5284−5296. doi: 10.1007/s10854-019-00828-w
    [9] SUN R R, SONG J G, ZHAO H T, et al. Control on the homogeneity and crystallinity of Zn0.5Cd0.5S nanocomposite by different reaction conditions with high photocatalytic activity for hydrogen production from water[J]. Mater Charact,2018,144:57−65. doi: 10.1016/j.matchar.2018.06.033
    [10] CHAN C C, CHANG C C, HSU C H, et al. Efficient and stable photocatalytic hydrogen production from water splitting over ZnxCd1-xS solid solutions under visible light irradiation[J]. Int J Hydrogen Energy,2014,39(4):1630−1639. doi: 10.1016/j.ijhydene.2013.11.059
    [11] MA L J, XU J, ZHAO S, et al. Construction of CoS2/Zn0.5Cd0.5S S-Scheme heterojunction for enhancing H2 evolution activity under visible light[J]. Chem Eur J,2021,27(63):15795−15805. doi: 10.1002/chem.202102811
    [12] MAURIN G, SERRE C, COOPER A, et al. The new age of MOFs and of their porous-related solids[J]. Chem Soc Rev,2017,46(11):3104−3107. doi: 10.1039/C7CS90049J
    [13] AL OBEIDLI A, BEN SALAH H, AL MURISI M, et al. Recent advancements in MOFs synthesis and their green applications[J]. Int J Hydrogen Energy,2022,47(4):2561−2593. doi: 10.1016/j.ijhydene.2021.10.180
    [14] WU T K, SHI Y Z, WANG Z W, et al. Unsaturated Ni-II centers mediated the coordination activation of benzylamine for enhancing photocatalytic activity over ultrathin Ni-MOF-74 nanosheets[J]. ACS Appl Mater Interfaces,2021,13(51):61286−61295. doi: 10.1021/acsami.1c20128
    [15] NIU L, ZHANG W G, LI H T, et al. The construction of double type II heterostructure from CdS and Ni-MOF-74 with two structures and enhanced mechanism of photocatalytic water splitting[J]. J Mater Sci,2022,57(10):5768−5787. doi: 10.1007/s10853-022-07014-0
    [16] 张腾, 蒋灶, 杨政鑫, 等. ZnxCd1-xS光催化降解垃圾渗滤液及其产氢性能研究[J]. 燃料化学学报,2022,50(10):1299−1306.

    ZHANG Teng, JIANG Zao, YANG Zhengxin, et al. ZnxCd1-xS for photocatalytic degradation of landfill leachate and its hydrogen production activity[J]. J Fuel Chem Technol,2022,50(10):1299−1306.
    [17] HU M, SHU J H, XU L J, et al. A novel nonmetal intercalated high crystalline g-C3N4 photocatalyst for efficiency enhanced H2 evolution[J]. Int J Hydrogen Energy,2022,47(23):11841−11852. doi: 10.1016/j.ijhydene.2022.01.227
    [18] LI H Y, HAO X Q, LIU Y, et al. ZnxCd1-xS nanoparticles dispersed on CoAl-layered double hydroxide in 2D heterostructure for enhanced photocatalytic hydrogen evolution[J]. J Colloid Interface Sci,2020,572:62−73. doi: 10.1016/j.jcis.2020.03.052
    [19] 郭沛然, 胡石林. Ni-MOF-74制备及其对CO的吸附性能[J]. 原子能科学技术,2020,54(4):8−590.

    GUO Peiran, HU Shilin. Preparation of Ni-MOF-74 and its adsorption property for CO[J]. At Energy Sci Technol,2020,54(4):8−590.
    [20] SHEN C C, LIU Y N, ZHOU X, et al. Large improvement of visible-light photocatalytic H2 evolution based on cocatalyst-free Zn0.5Cd0.5S synthesized through a two-step process[J]. Catal Sci Technol,2017,7(4):961−967. doi: 10.1039/C6CY02382G
    [21] CHEN J M, CHEN J Y, LI Y W. Hollow ZnCdS dodecahedral cages for highly efficient visible-light-driven hydrogen generation[J]. J Mater Chem A,2017,5(46):24116−24125. doi: 10.1039/C7TA07587A
    [22] TANG Y X, ZHANG D F, PU X P, et al. Snowflake-like Cu2S/Zn0.5Cd0.5S p-n heterojunction photocatalyst for enhanced visible light photocatalytic H2 evolution activity[J]. J Taiwan Inst Chem Eng,2019,96:487−495. doi: 10.1016/j.jtice.2018.12.021
    [23] YE H F, SHI R, YANG X, et al. P-doped ZnxCd1-xS solid solutions as photocatalysts for hydrogen evolution from water splitting coupled with photocatalytic oxidation of 5-hydroxymethylfurfural[J]. Appl Catal B: Environ,2018,233:70−79. doi: 10.1016/j.apcatb.2018.03.060
    [24] LI T, JIN Z L. Unique ternary Ni-MOF-74/Ni2P/MoSx composite for efficient photocatalytic hydrogen production: Role of Ni2P for accelerating separation of photogenerated carriers[J]. J Colloid Interface Sci,2022,605:385−397. doi: 10.1016/j.jcis.2021.07.098
    [25] WANG K, LI S L, LI Y J, et al. CoAl LDH in-situ derived CoAlP coupling with Ni2P form S-scheme heterojunction for efficient hydrogen evolution[J]. Int J Hydrogen Energy,2022,47(56):23618−23631. doi: 10.1016/j.ijhydene.2022.05.200
    [26] WANG H, YUAN, X Z, et al. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal[J]. Appl Catal B: Environ,2015,174:445−454.
    [27] GUO Y, LI J, YANG X X, et al. Zn0.5Cd0.5S/MIL-125-NH2(Ti) nanocomposites: Highly efficient and stable photocatalyst for hydrogen production under visible light[J]. Inorg Chem Commun,2020,112:107714. doi: 10.1016/j.inoche.2019.107714
    [28] HUANG D L, LI J, ZENG G M, et al. Facile construction of hierarchical flower-like Z-scheme AgBr/Bi2WO6 photocatalysts for effective removal of tetracycline: Degradation pathways and mechanism[J]. Chem Eng J,2019,375:121991. doi: 10.1016/j.cej.2019.121991
    [29] CAO R Y, YANG H C, ZHANG S W, et al. Engineering of Z-scheme 2D/3D architectures with Ni(OH)2 on 3D porous g-C3N4 for efficiently photocatalytic H2 evolution[J]. Appl Catal B: Environ,2019,258:117997. doi: 10.1016/j.apcatb.2019.117997
    [30] JIANG Z, XIAO C, YIN X Y, et al. Facile preparation of a novel Bi24O31Br10/nano-ZnO composite photocatalyst with enhanced visible light photocatalytic ability[J]. Ceram Int,2020,46(8):10771−10778. doi: 10.1016/j.ceramint.2020.01.087
    [31] DEMIRCIVI P, GULEN B, SIMSEK E B, et al. Enhanced photocatalytic degradation of tetracycline using hydrothermally synthesized carbon fiber decorated BaTiO3[J]. Mater Chem Phys,2020,241:122236. doi: 10.1016/j.matchemphys.2019.122236
    [32] LI Y B, JIN Z L, ZHANG L J, et al. Controllable design of Zn-Ni-P on g-C3N4 for efficient photocatalytic hydrogen production[J]. Chin J Catal,2019,40(3):390−402. doi: 10.1016/S1872-2067(18)63173-0
    [33] CHEN F, YANG Q, YAO F B, et al. Visible-light photocatalytic degradation of multiple antibiotics by AgI nanoparticle-sensitized Bi5O7I microspheres: Enhanced interfacial charge transfer based on Z-scheme heterojunctions[J]. J Catal,2017,352:160−170. doi: 10.1016/j.jcat.2017.04.032
    [34] 蒋灶, 吴廷增, 徐龙君, 等. ZnxCd1-xS的共沉淀法制备及其光催化活性研究[J]. 太阳能学报,2022,43(5):105−112.

    JIANG Zao, WU Tingzeng, XU Longjun, et al. ZnxCd1-xS prepared by coprecipitation method and its photocatalytic activity[J]. Acta Energ Sol Sin,2022,43(5):105−112.
    [35] 李艳, 李卓, 刘恩周. NiMoO4/ZnIn2S4 S-scheme异质结的制备及光催化产氢性能增强机制[J]. 聊城大学学报(自然科学版),2023,36(2):1−10.

    LI Yan, LI Zhuo, LIU Enzhou. Preparation of NiMoO4/ZnIn2S4 S-Scheme heterojunctions and enhancement mechanism of photocatalytic hydrogen production[J]. J Liaocheng Univ,2023,36(2):1−10.
    [36] 薛晋波, 高国翔, 申倩倩, 等. 新型S型CdS-BiVO4异质结光电极的构筑及产氢性能研究[J]. 高等学校化学学报,2021,42(8):2493−2499.

    XUE Jinbo, GAO Guoxiang, SHEN Qianqian, et al. Construction of a novel S-scheme CdS-BiVO4 heterojunction photoelectrodes and research on hydrogen production[J]. Chem Res Chin Univ,2021,42(8):2493−2499.
  • 加载中
图(8)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  60
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-08
  • 修回日期:  2023-06-06
  • 录用日期:  2023-06-12
  • 网络出版日期:  2023-06-27
  • 刊出日期:  2024-01-09

目录

    /

    返回文章
    返回