留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

均相与多相催化剂在CO2环加成反应中的研究进展

李宁宁 刘轩博 张宇航 王雨佳 常涛 朱正

李宁宁, 刘轩博, 张宇航, 王雨佳, 常涛, 朱正. 均相与多相催化剂在CO2环加成反应中的研究进展[J]. 燃料化学学报(中英文), 2024, 52(1): 105-130. doi: 10.19906/j.cnki.JFCT.2023052
引用本文: 李宁宁, 刘轩博, 张宇航, 王雨佳, 常涛, 朱正. 均相与多相催化剂在CO2环加成反应中的研究进展[J]. 燃料化学学报(中英文), 2024, 52(1): 105-130. doi: 10.19906/j.cnki.JFCT.2023052
LI Ningning, LIU Xuanbo, ZHANG Yuhang, WANG Yujia, CHANG Tao, ZHU Zheng. Research progress of homogeneous and heterogeneous catalysts in CO2 cycloaddition reactions[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 105-130. doi: 10.19906/j.cnki.JFCT.2023052
Citation: LI Ningning, LIU Xuanbo, ZHANG Yuhang, WANG Yujia, CHANG Tao, ZHU Zheng. Research progress of homogeneous and heterogeneous catalysts in CO2 cycloaddition reactions[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 105-130. doi: 10.19906/j.cnki.JFCT.2023052

均相与多相催化剂在CO2环加成反应中的研究进展

doi: 10.19906/j.cnki.JFCT.2023052
基金项目: 中央引导地方科技发展资金项目(226Z4304G)和河北省自然科学基金(B2020402002,E2021402017)资助
详细信息
    通讯作者:

    E-mail: changt03@sina.com

    zhuzheng@hebeu.edu.cn

  • 中图分类号: O643.36

Research progress of homogeneous and heterogeneous catalysts in CO2 cycloaddition reactions

Funds: The project was supported by the Central Guidance on Local Science and Technology Development Fund of Hebei Province (226Z4304G), the Hebei Natural Science Foundation (B2020402002, E2021402017).
  • 摘要: 二氧化碳(CO2)是一种主要的人为温室气体,主要由化学、热电和钢铁工业以及运输等部门产生。大气层中CO2浓度的增加是导致诸多环境问题的主要原因,如全球变暖、海平面上升和全球气温升高。然而,CO2作为一种可再生、廉价和无毒的化学原料,可用来生产具有高附加值的化学品,进而降低碳浓度。五元环碳酸酯由于其优越的物理化学特性,如高沸点、高偶极矩和生物降解等性能而被广泛应用。由环氧化合物和CO2合成环碳酸酯是迄今为止研究较多的方法。然而,由于CO2的高热稳定性和动力学惰性,使其作为反应原料需要大量的能量投入,可能导致的结果是CO2浓度是一个净增长过程。因此,利用CO2作为C1构筑单元是一个长期的挑战。本工作基于CO2固定反应机制,概述了各种类型的均相和多相催化剂在CO2固定反应合成精细化学品环状碳酸酯中的研究进展,包括有机催化剂、离子液体、金属有机框架化合物、多孔有机聚合物等。目前,几乎所有类别催化剂均可以在室温和低压力下,以实验室规模成功地使用纯CO2将其固定到末端环氧化合物上,对于非末端环氧化合物通过更高的温度和压力以实现相应转化。同时,分析了催化剂在多取代环氧化合物或生物衍生环氧化合物转化、低浓度CO2转化和实现工业化三个方面所面临的挑战,并提出了未来相关研究努力的方向。
  • FIG. 2885.  FIG. 2885.

    FIG. 2885.  FIG. 2885.

    图  1  CO2与环氧化合物环加成反应中催化剂分类

    Figure  1  Classification of catalysts for cycloaddition of epoxides with CO2

    图  2  CO2与环氧化合物环加成的反应机理

    Figure  2  Reaction mechanistic pathways of cycloaddition of epoxide with CO2

    图  3  双功能咪唑ILs的合成路线

    Figure  3  Synthetic route of bifunctional imidazolium ionic liquids

    图  4  [VIMEtOH][Br]-72 的合成路线

    Figure  4  Synthetic route of [VIMEtOH][Br]-72

    图  5  咪唑基ILs的合成路线

    Figure  5  Synthetic route of imidazole ionic liquid (ILs)

    图  6  质子双苯并咪唑盐的合成

    Figure  6  Synthesis of protic bis-benzimidazolium salts

    图  7  (a) NEt(HE)3Br分子结构; (b)双功能多羟基ILs的合成

    Figure  7  (a) Structure of NEt(HE)3Br; (b) Synthesis of bifunctional multi-hydroxyl ILs

    图  8  磷盐基催化剂

    Figure  8  Phosphonium-based catalysts

    图  9  吡啶基催化剂

    Figure  9  Pyridinium-based catalysts

    图  10  DBU基催化剂

    Figure  10  DBU-based catalysts

    图  11  DES催化剂

    Figure  11  DES catalysts

    图  12  (a)Sc-Salen 1a、(b)Salen-Ti,V、(c)(inden)CrIII 、(d)Al-Salen 3·(sol)2和(e)双核铬配合物的结构

    Figure  12  Structure of (a) Sc-Salen 1a, (b) Salen-Ti, V, (c) inden-CrIII (d) Al-Salen 3·(sol)2 and (e) dichroic chromium complexes

    图  13  (a)双核镍催化剂及(b)大环配合物的结构

    Figure  13  Structure of (a) dual-core nickel catalyst and (b) Macrocyclic complex

    图  14  锌配合物的结构及配合物/TBAB体系催化CO2/PO环加成反应的机理

    Figure  14  Structure of zinc complex and mechanism of CO2/PO coupling catalyzed by the complex/TBAB system

    图  15  (a)[MnIII(T2,3-DCPP)X]、(b)(CoCl)2-1[60]和(c) MIIPzs的结构

    Figure  15  Structure of (a) [MnIII(T2,3-DCPP)X], (b) (CoCl)2-1[60] and (c) MIIPzs

    (with permission from Wiley Publications)

    图  16  (a) 双功能Al配合物、(b)高铁酸盐配合物和(c) Fe(II)亚氨基吡啶配合物的结构

    Figure  16  Structure of (a)bifunctional Al, (b) Fe(II) iminopyridine and (c) ferrate complexes

    (with permission from Wiley Publications)

    图  17  将金属salophen配合物固定在丙胺官能化SBA-15二氧化硅上的共价接枝策略

    Figure  17  Covalent grafting strategy for fixation of metallic salophen complex onto propyl functionalized SBA-15 silica

    图  18  KIT-6@ILCH3CH (OH) COO (0.6)催化CO2与环氧化合物环加成反应机理

    Figure  18  Possible reaction mechanism for the cycloaddition of CO2 with epoxides catalyzed by KIT-6@ILCH3CH(OH)COO(0.6)

    图  19  ZrO2/g-C3N4催化环加成反应的可能机理

    Figure  19  A possible mechanism of cycloaddition reaction catalyzed by ZrO2/g-C3N4

    图  20  化合物Cu MOF单晶结构:(a) 两种Cu配位模式和CPTPTA5−配体的多面体简化;(b) 球棒视图和(c) 沿[001]框架的多面体视图[85]

    Figure  20  Single-crystal structure of compound Cu MOF: (a) polyhedral simplifications of two kinds of Cu coordination modes and CPTPTA5-ligand; (b) ball-and-stick view and (c) polyhedral view of the framework along [001][85] (with permission from RSC Publications)

    图  21  Co(II)-MOF NRs/TBAB催化过程中环氧化合物活化和环加成的可能机制示意图

    Figure  21  Schematic for the possible mechanisms of epoxide activation and cycloaddition during Co(II)-MOF NRs/TBAB-based catalysis

    图  22  COF-SO3H的合成方案

    Figure  22  The synthesis scheme of COF-SO3H

    图  23  由Zn@TpTta/TBAB二进制系统催化的环氧乙烷和CO2偶联的反应机理[90]

    Figure  23  Coupling mechanism of ethylene oxide and CO2 catalyzed by Zn@TpTta/TBAB binary system [90] (with permission from RSC Publications)

    图  24  (a)2,5-DCP-CTF理想化建筑单元图解;(b)2,5-DCP-CTF的结构示意图[93]

    Figure  24  (a) 2,5-DCP-CTF idealized building unit diagram; (b) Structural diagram of 2, 5-DCCP-CTF [93] (with permission from RSC Publications)

    图  25  CTF TPM的合成路线

    Figure  25  Synthetic route of CTF-TPMs

    图  26  CTF和CTF-IM的合成工艺

    Figure  26  Synthesis process of CTF and CTF-IM

    图  27  用1-氨基乙基-3-甲基咪唑溴化铵对ZIF-8 (x)进行合成后修饰

    Figure  27  Postsynthetic modification of ZIF-8 (x) with 1-aminoethyl-3-methylimidazolium bromide

    图  28  ZIF-67或ZIF-67@CeO2催化CO2与SO环加成反应可能的协同催化过程

    Figure  28  A possible synergistic catalytic process of CO2 cycloaddition reaction with SO over ZIF-67 or over ZIF-67@CeO2

    图  29  ML-ZIF的De novo 合成

    Figure  29  De novo syntheses of ML-ZIFs

    图  30  胺官能化Co/Zn-ZIF-A材料的合成过程示意图

    Figure  30  Schematic illustration of the synthesis procedure of amine-functionalized Co/Zn-ZIF-A materials

    图  31  双功能离子超交联聚合物的过程示意图

    Figure  31  Schematic procedure of bifunctional ionic hyper-cross-linked polymers

    图  32  Py-HCP-X的制备方法

    Figure  32  Preparation procedure for Py-HCP-X

    图  33  IHCPs的结构

    Figure  33  The structure of IHCPs

    图  34  含单个钴位点的超薄CMP纳米片的制造示意图

    Figure  34  Fabrication diagram of ultra-thin CMP nanosheets containing a single cobalt site

    图  35  (a)Zn-Salen-CMP和(b)CMP-Salen-Zn的结构

    Figure  35  Structure of (a) Zn-Salen-CMP and (b) CMP-Salen-Zn

    图  36  PPh2PStR-PMtVPP的合成路线[123]

    Figure  36  Schematic diagram of several porous organic polymers[123] (with permission from RSC Publications)

    图  37  几种多孔有机聚合物的结构示意图

    Figure  37  Schematic diagram of several porous organic polymers

    图  38  PIM2的合成路线

    Figure  38  Synthetic route of PIM2

    图  39  IL-m、PIL-m和PIL-DVB-x的合成工艺

    Figure  39  The synthesis process of IL-m, PIL-m and PIL-DVB-x

    图  40  制备PLMs的简单机理

    Figure  40  The brief scheme for the preparation of PILMs

    图  41  功能阳离子PAMAM树枝状聚合物的合成路线[136]

    Figure  41  Synthetic route of functional cationic PAMAM dendrimer[136] (with permission from Elsevier)

    表  1  不同多相催化剂催化活性的比较

    Table  1  Comparison of catalytic activity of different heterogeneous catalysts

    CatalystCo-catalystReaction conditions
    catalyst amount/epoxide amount
    (mmol)/temperature(℃)/CO2 pressure(bar)/time(h)
    Yield
    /%
    References
    Support Salophen-MnClTBAB0.05 mmol/6.1 mmol/120/15/4100[77]
    KIT-6@ILCH3CH(OH)COO(0.6)0.15 g/0.01/90/7/299[78]
    ZrO2/g-C3N4−400200 mg/16.6/140/20/669[79]
    Cu MOFTBAB0.5%/20/60/20/697[85]
    PMo12@Zr-FcMOFTBAB10.26%/12.5/80/1/886.77[86]
    Co(II)MOFTBAB15 mg/31/80/10/397[87]
    COF-SO3HTBAB0.01 mmol/20/80/1/2499[89]
    Zn@TpTtaTBAB10 mmol/10/60/1/4100[90]
    PIL-HPCOF15 mg/5/90/10/2499[91]
    2,5-DCP-CTF100 mg/18/130/6.9/499.1[93]
    CTF-TPM-4003%/10/100/7/2499[94]
    CTF-IM100 mg/35.7/120/20/2.594.6[95]
    IL-ZIF-8(0.3)30 mg/25/110/10/497[99]
    ZIF-67@CeO24.6%/-/120/7.5/8100[100]
    ML-ZIF 5Co0.2%/-/120/14/0.594[101]
    Co/Zn-ZIF-A-24 h50 mg/25/80/1/2499[102]
    DHI-CSU-3-BrTBAB30 mg/3/70/1/499[110]
    Py-HCP-Br0.4 g/34.5/120/20/497[111]
    IHCP-1100 mg/10/140/10/2499[112]
    DTBBQ-CMPTBAB5 mg/2/25/1/4899[115]
    Zn-Salen-CMPTBAB0.1 mmol/50/120/30/190[116]
    CMP-Salen-ZnTBAB0.025 mmol/5/120/1/1299[117]
    Co-PPOPs20 mg/25/25/1/4898[122]
    PPh2PStR-PMtVPP0.0424 mmol/20/80/48/198.9[123]
    COCP-OHKI71 mg/10/70/1/2494.8[124]
    1D-UCPKI0.1 mmol/10/80/1/2490.1[125]
    PMP-TDNs61.3 mg/50/110/10/898.6[126]
    PIMBr-COOH1%/43/100/1/694[128]
    PIP-urea0.3%/10/100/10/593[129]
    H-MOP-BATBAI1.25 mmol/4/50/10/2496[130]
    PIM20.2%/10/130/10/492[133]
    PIL-DVB-IV0.5 g/34.5/110/20/693[134]
    PILMs0.319 mmol/28.6/110/25/387.3[135]
    [G3−PAMAM-HADMAB-C18]Br0.3125%/50/110/10/394.9[136]
    下载: 导出CSV
  • [1] YANG Z Q, HE C Q, SUI H, et al. Recent advances of CO2-responsive materials in separations[J]. J CO2 Util,2019,30:79−99. doi: 10.1016/j.jcou.2019.01.004
    [2] PARKINSON B, BALCOMBE P, SPEIRS J F, et al. Levelized cost of CO2 mitigation from hydrogen production routes[J]. Energy Environ Sci,2019,12(1):19−40. doi: 10.1039/C8EE02079E
    [3] FAJARDY M, MAC DOWELL N. The energy return on investment of BECCS: Is BECCS a threat to energy security?[J]. Energy Environ Sci,2018,11(6):1581−1594. doi: 10.1039/C7EE03610H
    [4] SZIMA S, NAZIR S M, CLOETE S, et al. Gas switching reforming for flexible power and hydrogen production to balance variable renewables[J]. Renewable Sustainable Energy Rev,2019,110:207−219. doi: 10.1016/j.rser.2019.03.061
    [5] CHATTERJEE R, BHATTACHARJEE S, BHAUMIK A. Bifunctional metal-free heterogeneous catalyst for the synthesis of methanol and diols from CO2 and Epoxide[J]. Asian J Org Chem,2022,11(9):e202200317.
    [6] LIU R, XU S, HAO G P, et al. Recent advances of porous solids for ultradilute CO2 capture[J]. Chem Res Chin Univ,2022,38(1):18−30. doi: 10.1007/s40242-021-1394-x
    [7] KHOO H H, BU J, WONG R L, et al. Carbon capture and utilization: Preliminary life cycle CO2, energy, and cost results of potential mineral carbonation[J]. Energy Procedia,2011,4:2494−2501. doi: 10.1016/j.egypro.2011.02.145
    [8] ALLURI S, CLAREMBOUX, V, KAWATRA S. Opportunities and challenges in CO2 utilization[J]. J Environ Sci,2022,113:322−344. doi: 10.1016/j.jes.2021.05.043
    [9] CUÉLLAR-FRANCA R M, AZAPAGIC A. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts[J]. J CO2 Util,2015,9:82−102. doi: 10.1016/j.jcou.2014.12.001
    [10] 姜秀云, 杨文兵, 宋昊, 等. 甲酸辅助Cu-ZnO-Al2O3催化剂制备及其CO2加氢制甲醇性能研究[J]. 燃料化学学报(中英文),2023,51(1):120−128. doi: 10.1016/S1872-5813(22)60041-0

    JIANG Xiuyun, YANG Wenbing, SONG Hao, et al. Formic acid assisted synthesis of Cu-ZnO-Al2O3 catalyst and its performance in CO2 hydrogenation to methanol[J]. J Fuel Chem Technol,2023,51(1):120−128. doi: 10.1016/S1872-5813(22)60041-0
    [11] 周程, 南永永, 查飞, 等. 金属有机骨架材料在二氧化碳加氢中的应用[J]. 燃料化学学报,2021,49(10):1444−1457. doi: 10.1016/S1872-5813(21)60097-X

    ZHOU Cheng, NAN Yongyong, ZHA Fei, et al. Application of metal-organic frameworks in CO2 hydrogenation[J]. J Fuel Chem Technol,2021,49(10):1444−1457. doi: 10.1016/S1872-5813(21)60097-X
    [12] 毛瑀中, 查飞, 田海锋, 等. 热催化CO2加氢制乙醇的研究进展[J]. 燃料化学学报(中英文),2023,51(5):1−15.

    MAO Yuzhong, ZHA Fei, TIAN Haifeng, et al. Progress in thermal catalysis hydrogenation of CO2 to ethanol[J]. J Fuel Chem Technol,2023,51(5):1−15.
    [13] LI G Q, DONG S, FU P, et al. Synthesis of porous poly(ionic liquid)s for chemical CO2 fixation with epoxides[J]. Green Chem,2022,24(9):3433−3460. doi: 10.1039/D2GC00324D
    [14] LI N N, QIN S J, HAO Y J, et al. Nanoarchitectonics of polymeric crown-ether analog of Tröger base combined with potassium iodide and acids synergy in fixation of CO2 and epoxides[J]. Mol Catal,2023,545:113241. doi: 10.1016/j.mcat.2023.113241
    [15] KULAL N, VASISTA V, SHANBHAG G V. Identification and tuning of active sites in selected mixed metal oxide catalysts for cyclic carbonate synthesis from epoxides and CO2[J]. J CO2 Util,2019,33:434−444. doi: 10.1016/j.jcou.2019.07.018
    [16] GAO L Y, ZHOU Y, LI Z J, et al. Nicotinamide onium halide bidentate hybrid H-bond donor organocatalyst for CO2 fixation[J]. J CO2 Util,2022,65:102196. doi: 10.1016/j.jcou.2022.102196
    [17] SONG X H, WU Y F, PAN D H, et al. Melem based multifunctional catalyst for chemical fixation of carbon dioxide into cyclic carbonate[J]. J CO2 Util,2018,24:287−297. doi: 10.1016/j.jcou.2018.01.017
    [18] KAMPHUIS A J, PICCHIONI F, PESCARMONA P P. CO2-fixation into cyclic and polymeric carbonates: principles and applications[J]. Green Chem,2019,21(3):406−448. doi: 10.1039/C8GC03086C
    [19] LEU M K, VICENTE I, FERNANDES J A, et al. On the real catalytically active species for CO2 fixation into cyclic carbonates under near ambient conditions: Dissociation equilibrium of [BMIm][Fe(NO)2Cl2] dependant on reaction temperature[J]. Appl Catal B: Environ,2019,245:240−250. doi: 10.1016/j.apcatb.2018.12.062
    [20] LIU J, YANG G Q, LIU Y, et al. Efficient conversion of CO2 into cyclic carbonates at room temperature catalyzed by Al-salen and imidazolium hydrogen carbonate ionic liquids[J]. Green Chem,2020,22(14):4509−4515. doi: 10.1039/D0GC00458H
    [21] REHMAN A, SALEEM F, JAVED F, et al. Recent advances in the synthesis of cyclic carbonates via CO2 cycloaddition to epoxides[J]. J Environ Chem Eng,2021,9(2):105113. doi: 10.1016/j.jece.2021.105113
    [22] LU Z, HE J, GUO B G, et al. Efficient homogenous catalysis of CO2 to generate cyclic carbonates by heterogeneous and recyclable polypyrazoles[J]. Chin J Chem Eng,2022,43:110−115. doi: 10.1016/j.cjche.2022.01.009
    [23] 李东娜, 邱明月, 张奇日, 等. 一步法构筑离子液体功能化MOF材料用于常压催化CO2环加成反应[J]. 燃料化学学报,2022,50(7):824−831. doi: 10.1016/S1872-5813(21)60195-0

    LI Dongna, QIU Mingyue, ZHANG Qiri, et al. One-pot construction of ionic liquid-functionalized MOF material as the catalyst for CO2 cycloaddition under atmospheric pressure[J]. J Fuel Chem Technol,2022,50(7):824−831. doi: 10.1016/S1872-5813(21)60195-0
    [24] 胡凤群, 邱明月, 易群, 等. 核壳型MOFs@离子液体复合材料的制备及其常压下催化CO2环加成反应性能探究[J]. 燃料化学学报(中英文),2023,51(11):1673−1682.

    HU Fengqun, QIU Mingyue, YI Qun, et al. Construction of core-shell MOFs@ionic liquid materials and their performance for CO2 cycloaddition reaction under atmospheric pressure[J]. J Fuel Chem Technol,2023,51(11):1673−1682.
    [25] KEMBER M R, BUCHARD A, WILLIAMS C K. Catalysts for CO2/epoxide copolymerisation[J]. Chem Commun,2011,47(1):141−163. doi: 10.1039/C0CC02207A
    [26] 王献红, 王佛松. CO2的固定和利用[M]. 北京: 化学工业出版社, 2011: 64.

    WANG Xianhong, WANG Fosong. CO2 Fixation and Utilization[M]. Beijing: Chemical Industry Press, 2011: 64.
    [27] GUO L P, LAMB K J, NORTH M. Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates[J]. Green Chem,2021,23(1):77−118. doi: 10.1039/D0GC03465G
    [28] YUE S, WANG P, HAO X. Synthesis of cyclic carbonate from CO2 and epoxide using bifunctional imidazolium ionic liquid under mild conditions[J]. Fuel,2019,251:233−241. doi: 10.1016/j.fuel.2019.04.039
    [29] MUJMULE R B, KIM H. Efficient imidazolium ionic liquid as a tri-functional robust catalyst for chemical fixation of CO2 into cyclic carbonates[J]. J Environ Manage,2022,314:115045. doi: 10.1016/j.jenvman.2022.115045
    [30] ZHANG A, CHEN C J, ZUO C S, et al. Imidazolium-based ionic liquids containing multipoint hydrogen bond donors as bifunctional organocatalysts for efficient cooperative conversion of CO2 to cyclic carbonates[J]. Green Chem,2022,24(18):7194−7207. doi: 10.1039/D2GC02517E
    [31] de ALMEIDA BEZERRA W, MILANI J L S, de JESUS FRANCO C H, et al. Bis-benzimidazolium salts as bifunctional organocatalysts for the cycloaddition of CO2 with epoxides[J]. Mol Catal,2022,530:112632. doi: 10.1016/j.mcat.2022.112632
    [32] CHENG W G, XIAO B N, SUN J, et al. Effect of hydrogen bond of hydroxyl-functionalized ammonium ionic liquids on cycloaddition of CO2[J]. Tetrahedron Lett,2015,56(11):1416−1419. doi: 10.1016/j.tetlet.2015.01.174
    [33] PENG J, WANG S, YANG H J, et al. Highly efficient fixation of carbon dioxide to cyclic carbonates with new multi-hydroxyl bis-(quaternary ammonium) ionic liquids as metal-free catalysts under mild conditions[J]. Fuel,2018,224:481−488. doi: 10.1016/j.fuel.2018.03.119
    [34] BÜTTNER H, STEINBAUER J, WULF C, et al. Organocatalyzed synthesis of oleochemical carbonates from CO2 and renewables[J]. ChemSusChem,2017,10(6):1076−1079. doi: 10.1002/cssc.201601163
    [35] LIU Y, CHENG W G, ZHANG Y Q, et al. Controllable preparation of phosphonium-based polymeric ionic liquids as highly selective nanocatalysts for the chemical conversion of CO2 with epoxides[J]. Green Chem,2017,19(9):2184−2193. doi: 10.1039/C7GC00444C
    [36] SHAIKH A C, VELETA J M, BLOCH J, et al. Syntheses of phosphonium salts from phosphines and carbenium: efficient CO2 fixation and phase-transfer catalysts[J]. Eur J Org Chem,2020,2020(17):2553−2559. doi: 10.1002/ejoc.202000221
    [37] ZHANG Z G, FAN F J, XING H B, et al. Efficient synthesis of cyclic carbonates from atmospheric CO2 using a positive charge delocalized ionic liquid catalyst[J]. ACS Sustainable Chem Eng,2017,5(4):2841−2846. doi: 10.1021/acssuschemeng.7b00513
    [38] ROSTAMI A, MAHMOODABADI M, HOSSEIN E A, et al. An electrostatically enhanced phenol as a simple and efficient bifunctional organocatalyst for carbon dioxide fixation[J]. ChemSusChem,2018,11(24):4262−4268. doi: 10.1002/cssc.201802028
    [39] NOROUZI F, ABDOLMALEKI A. CO2 conversion into carbonate using pyridinium-based ionic liquids under mild conditions[J]. Fuel,2023,334:126641. doi: 10.1016/j.fuel.2022.126641
    [40] LI W, CHENG W G, YANG X, et al. Synthesis of cyclic carbonate catalyzed by DBU derived basic ionic liquids[J]. Chin J Chem,2018,36(4):293−298. doi: 10.1002/cjoc.201700747
    [41] FANJUL-MOSTEIRÍN N, JEHANNO C, RUIPÉREZ F, et al. Rational study of DBU salts for the CO2 insertion into epoxides for the synthesis of cyclic carbonates[J]. ACS Sustainable Chem Eng,2019,7(12):10633−10640. doi: 10.1021/acssuschemeng.9b01300
    [42] CHOWDHURY B, ZVINCHUK A A, AYSIN R R, et al. Amine-iodine adducts as simple but effective catalysts for the synthesis of organic carbonates from epoxides and CO2[J]. Catal Surv Asia,2021,25(4):419−423. doi: 10.1007/s10563-021-09341-9
    [43] HE L, ZHANG W W, YANG Y F, et al. Novel biomass-derived deep eutectic solvents promoted cycloaddition of CO2 with epoxides under mild and additive-free conditions[J]. J CO2 Util,2021,54:101750. doi: 10.1016/j.jcou.2021.101750
    [44] YANG X Q, ZOU Q Z, ZHAO T X, et al. Deep eutectic solvents as efficient catalysts for fixation of CO2 to cyclic carbonates at ambient temperature and pressure through synergetic catalysis[J]. ACS Sustainable Chem Eng,2021,9(31):10437−10443. doi: 10.1021/acssuschemeng.1c03187
    [45] SHENG T, OU J L, ZHAO T X, et al. Efficient fixation of CO2 into cyclic carbonate catalyzed by choline bromide/imidazole derivatives-based deep eutectic solvents[J]. Mol Catal,2023,536:112907. doi: 10.1016/j.mcat.2022.112907
    [46] NG C K, TOH R W, LIN T T, et al. Metal-salen molecular cages as efficient and recyclable heterogeneous catalysts for cycloaddition of CO2 with epoxides under ambient conditions[J]. Chem Sci,2019,10(5):1549−1554. doi: 10.1039/C8SC05019H
    [47] CASTRO-OSMA J A, LAMB K J, NORTH M. Cr (salophen) complex catalyzed cyclic carbonate synthesis at ambient temperature and pressure[J]. ACS Catal,2016,6(8):5012−5025. doi: 10.1021/acscatal.6b01386
    [48] DELLA MONICA F, CAPACCHIONE C. Recent advancements in metal-catalysts design for CO2/epoxide reactions[J]. Asian J Org Chem,2022,11(8):e202200300.
    [49] AOMCHAD V, Del GOBBO S, YINGCHAROEN P, et al. Exploring the potential of group III salen complexes for the conversion of CO2 under ambient conditions[J]. Catal Today,2021,375:324−334. doi: 10.1016/j.cattod.2020.01.021
    [50] KUZNETSOVA S A, GORODISHCH I V, GAK A S. Chiral titanium(IV) and vanadium(V) salen complexes as catalysts for carbon dioxide and epoxide coupling reactions[J]. Tetrahedron,2021,82:131929. doi: 10.1016/j.tet.2021.131929
    [51] KIRIRATNIKOM J, LAIWATTANAPAISARN N, VONGNAM K, et al. Highly active chromium complexes supported by constrained schiff-base ligands for cycloaddition of carbon dioxide to epoxides[J]. Inorg Chem,2021,60(9):6147−6151. doi: 10.1021/acs.inorgchem.0c03732
    [52] KANG Y R, WANG B N, NAN R X, et al. Cyclic carbonate synthesis from epoxides and CO2 catalyzed by aluminum-salen complexes bearing a nido-C2B9 carborane ligand[J]. Inorg Chem,2022,61(23):8806−8814. doi: 10.1021/acs.inorgchem.2c00797
    [53] CONTENTO I, LAMPARELLI D H, BUONERBA A, et al. New dinuclear chromium complexes supported by thioether-triphenolate ligands as active catalysts for the cycloaddition of CO2 to epoxides[J]. J CO2 Util,2022,66:102276. doi: 10.1016/j.jcou.2022.102276
    [54] NORTH M, QUEK S C Z, PRIDMORE N E, et al. Aluminum (salen) complexes as catalysts for the kinetic resolution of terminal epoxides via CO2 coupling[J]. ACS Catal,2015,5(6):3398−3402. doi: 10.1021/acscatal.5b00235
    [55] SU Y C, TSUI C H, TSAI C Y, et al. Highly active bimetallic nickel catalysts for alternating copolymerization of carbon dioxide with epoxides[J]. Polym Chem,2020,11(18):3225−3236. doi: 10.1039/D0PY00174K
    [56] DEACY A C, MOREBY E, PHANOPOULOS A, et al. Co(III)/alkali-metal(I) heterodinuclear catalysts for the ring-opening copolymerization of CO2 and propylene oxide[J]. J Am Chem Soc,2020,142(45):19150−19160. doi: 10.1021/jacs.0c07980
    [57] CHEN J, WU X M, DING H N, et al. Tolerant bimetallic macrocyclic -type zinc complexes for efficient CO2 fixation into cyclic carbonates[J]. ACS Sustainable Chem Eng,2021,9(48):16210−16219. doi: 10.1021/acssuschemeng.1c05469
    [58] MAEDA C, SHIMONISHI J, MIYAZAKI R, et al. Highly active and robust metalloporphyrin catalysts for the synthesis of cyclic carbonates from a broad range of epoxides and carbon dioxide[J]. Chem-Eur J,2016,22(19):6556−6563. doi: 10.1002/chem.201600164
    [59] MILANI J L S, MEIRELES A M, CABRAL B N, et al. Highly active Mn(III) meso-tetrakis(2, 3-dichlorophenyl) porphyrin catalysts for the cycloaddition of CO2 with epoxides[J]. J CO2 Util,2019,30:100−106. doi: 10.1016/j.jcou.2018.12.017
    [60] SCHOEPFF L, MONNEREAU L, DUROT S, et al. A flexible bis-Co(III) porphyrin cage as a bimetallic catalyst for the conversion of CO2 and epoxides into cyclic carbonates[J]. ChemCatChem,2020,12(22):101635.
    [61] LEAL J P S C, BEZERRA W A, CHAGAS R P, et al. Metal–cocatalyst interaction governs the catalytic activity of MII-Porphyrazines for chemical fixation of CO2[J]. Inorg Chem,2021,60(16):12263−12273. doi: 10.1021/acs.inorgchem.1c01462
    [62] MARTÍNEZ J, DE LA CRUZ-MARTÍNEZ F, GAONA M A, et al. Influence of the counterion on the synthesis of cyclic carbonates catalyzed by bifunctional aluminum complexes[J]. Inorg Chem,2019,58(5):3396−3408. doi: 10.1021/acs.inorgchem.8b03475
    [63] PANZA N, BIASE A, GALLO E, et al. Unexpected “ferrate” species as single-component catalyst for the cycloaddition of CO2 to epoxides[J]. J CO2 Util,2021,51:101635. doi: 10.1016/j.jcou.2021.101635
    [64] KIM J H, LEE S H, KIM N H, et al. Sustainable synthesis of five-membered heterocycles using carbon dioxide and Fe-iminopyridine catalysts[J]. J CO2 Util,2021,50:101595. doi: 10.1016/j.jcou.2021.101595
    [65] MILOCCO F, CHIARIONI G, PESCARMONA P P. Heterogeneous catalysts for the conversion of CO2 into cyclic and polymeric carbonates[J]. Adv Catal,2022,70:151−187.
    [66] DU Y, CAI F, KONG D L, et al. Organic solvent-free process for the synthesis of propylene carbonate from supercritical carbon dioxide and propylene oxide catalyzed by insoluble ion exchange resins[J]. Green Chem,2005,7(7):518−523. doi: 10.1039/b500074b
    [67] ZHANG Q, ZHANG S B, LI S H. Novel functional organic network containing quaternary phosphonium and tertiary phosphorus[J]. Macromol,2012,45(7):2981−2988. doi: 10.1021/ma300278d
    [68] GHAZALI-ESFAHANI S, SONG H B, PĂUNESCU E, et al. Cycloaddition of CO2 to epoxides catalyzed by imidazolium-based polymeric ionic liquids[J]. Green Chem,2013,15(6):1584−1589. doi: 10.1039/c3gc37085b
    [69] HAN L, PARK S W, PARK D W. Silica grafted imidazolium-based ionic liquids: Efficient heterogeneous catalysts for chemical fixation of CO2 to a cyclic carbonate[J]. Energy Environ Sci,2009,2(12):1286−1292. doi: 10.1039/b910763k
    [70] XIE Y, ZHANG Z F, JIANG T, et al. CO2 cycloaddition reactions catalyzed by an ionic liquid grafted onto a highly crosslinked polymer matrix[J]. Angew Chem Int Ed,2007,46(38):7255−7258. doi: 10.1002/anie.200701467
    [71] APRILE C, GIACALONE F, AGRIGENTO P, et al. Multilayered supported ionic liquids as catalysts for chemical fixation of carbon dioxide: A high-throughput study in supercritical conditions[J]. ChemSusChem,2011,4(12):1830−1837. doi: 10.1002/cssc.201100446
    [72] CHANG T, LI X P, HAO Y J, et al. Pyrene-based ammonium bromides combined with g-C3N4 for the synergistically enhanced fixation reaction of CO2 and epoxides[J]. RSC Adv,2021,11(48):30222−30228. doi: 10.1039/D1RA05328K
    [73] ZANDA N, SOBOLEWSKA A, ALZA E, et al. Organocatalytic and halide-free synthesis of glycerol carbonate under continuous flow[J]. ACS Sustainable Chem Eng,2021,9(12):4391−4397. doi: 10.1021/acssuschemeng.1c01060
    [74] BARBARINI A, MAGGI R, MAZZACANI A, et al. Cycloaddition of CO2 to epoxides over both homogeneous and silica-supported guanidine catalysts[J]. Tetrahedron Lett,2003,44(14):2931−2934. doi: 10.1016/S0040-4039(03)00424-6
    [75] UDAYAKUMAR S, LEE M K, SHIM H L, et al. Imidazolium derivatives functionalized MCM-41 for catalytic conversion of carbon dioxide to cyclic carbonate[J]. Catal Commun,2009,10(5):659−664. doi: 10.1016/j.catcom.2008.11.017
    [76] CHENG W G, CHEN X, SUN J, et al. SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of CO2 with epoxides[J]. Catal Today,2013,200:117−124. doi: 10.1016/j.cattod.2012.10.001
    [77] BALAS M, BEAUDOIN S, PROUST A, et al. Advantages of covalent immobilization of metal‐salophen on amino-functionalized mesoporous silica in terms of recycling and catalytic activity for CO2 cycloaddition onto epoxides[J]. Eur J Inorg Chem,2021,2021(16):1581−1591. doi: 10.1002/ejic.202100150
    [78] LIU Y, HU Y L. Novel and high efficient cycloaddition of CO2 with epoxides to cyclic carbonates over reusable mesoporous KIT-6 supported imidazolium lactate catalyst[J]. Bull Chem Soc Ethiop,2022,36(2):433−450. doi: 10.4314/bcse.v36i2.16
    [79] LIU N, WU F, XU J, et al. ZrO2 supported on graphitic carbon nitride based on metal-nitrogen interaction for enhanced catalytic cycloaddition of CO2 to cyclic carbonates[J]. Catal Lett,2023,153(5):1483−1494. doi: 10.1007/s10562-022-04083-3
    [80] HE H M, PERMAN J A, ZHU G S, et al. Metal-organic frameworks for CO2 chemical transformations[J]. Small,2016,12(46):6309−6324. doi: 10.1002/smll.201602711
    [81] LIANG J, HUANG Y B, CAO R. Metal-organic frameworks and porous organic polymers for sustainable fixation of carbon dioxide into cyclic carbonates[J]. Coord Chem Rev,2019,378:32−65. doi: 10.1016/j.ccr.2017.11.013
    [82] PAL T K, DE D, BHARADWAJ P K C. Metal-organic frameworks for the chemical fixation of CO2 into cyclic carbonates[J]. Coord Chem Rev,2020,408:213173. doi: 10.1016/j.ccr.2019.213173
    [83] SONG X J, WANG J, YANG L B, et al. The transformation strategies between homogeneous and heterogeneous catalysts for the coupling reactions of CO2 and epoxides/olefins[J]. Inorg Chem Commun,2020,121:108197. doi: 10.1016/j.inoche.2020.108197
    [84] QI X P, CHANG T, ZHU Z, et al. Post-synthetic modification of Isomorphic coordination polymers with metal ion exchange and catalytic cycloaddition of CO2[J]. J Solid State Chem,2021,304:122604. doi: 10.1016/j.jssc.2021.122604
    [85] ZHU Y Y, GU J M, YU X Y, et al. The multifunctional design of metal-organic framework by applying linker desymmetrization strategy: synergistic catalysis for high CO2-epoxide conversion[J]. Inorg Chem Front,2021,8(23):4990−4997. doi: 10.1039/D1QI00960E
    [86] FANG Z, DENG Z, WAN X Y, et al. Keggin-type polyoxometalates molecularly loaded in Zr-ferrocene metal organic framework nanosheets for solar-driven CO2 cycloaddition[J]. Appl Catal B: Environ,2021,296:120329. doi: 10.1016/j.apcatb.2021.120329
    [87] ULLAH N, RAMIERE A, RAZA W, et al. Cobalt-based MOF nanoribbons with abundant O/N species for cycloaddition of carbon dioxide to epoxides[J]. J Colloid Interf Sci,2022,623:752−761. doi: 10.1016/j.jcis.2022.05.082
    [88] DALIRAN S, OVEISI A R, PENG Y, et al. Metal-organic-framework (MOF), covalent-organic-framework (COF), and porous-organic-polymers (POP) catalyzed selective C–H bond activation and functionalization reactions[J]. Chem Soc Rev,2022,51(18):7810−7882. doi: 10.1039/D1CS00976A
    [89] SINGH G, NAGARAJA C M. Highly efficient metal/solvent-free chemical fixation of CO2 at atmospheric pressure conditions using functionalized porous covalent organic frameworks[J]. J CO2 Util,2021,53:101716. doi: 10.1016/j.jcou.2021.101716
    [90] SARKAR S, GHOSH S, ISLAM S M. A Zn (ii)-functionalized COF as a recyclable catalyst for the sustainable synthesis of cyclic carbonates and cyclic carbamates from atmospheric CO2[J]. Org Biomol Chem,2022,20(8):1707−1722. doi: 10.1039/D1OB01938D
    [91] DU Y R, YANG X, WANG Y F, et al. Immobilization poly(ionic liquid)s into hierarchical porous covalent organic frameworks as heterogeneous catalyst for cycloaddition of CO2 with epoxides[J]. Mol Catal,2022,520:112164. doi: 10.1016/j.mcat.2022.112164
    [92] LUO R C, XU W, CHEN M, et al. Covalent triazine frameworks obtained from nitrile monomers for sustainable CO2 catalysis[J]. ChemSusChem,2020,13(24):6509−6522. doi: 10.1002/cssc.202002422
    [93] LI Y M, YANG L, SUN L, et al. Chemical fixation of carbon dioxide catalyzed via covalent triazine frameworks as metal free heterogeneous catalysts without a cocatalyst[J]. J Mater Chem A,2019,7(45):26071−26076. doi: 10.1039/C9TA07266G
    [94] ZHAO Y L, HUANG H L, ZHU H, et al. Design and synthesis of novel pyridine-rich cationic covalent triazine framework for CO2 capture and conversion[J]. Micropor ous Mesopor ous Mater,2022,329:111526. doi: 10.1016/j.micromeso.2021.111526
    [95] DAI W L, LI Q, LONG J F, et al. Hierarchically mesoporous imidazole-functionalized covalent triazine framework: An efficient metal-and halogen-free heterogeneous catalyst towards the cycloaddition of CO2 with epoxides[J]. J CO2 Util,2022,62:102101. doi: 10.1016/j.jcou.2022.102101
    [96] HWANG G Y, ROSHAN R, RYU H S, et al. A highly efficient zeolitic imidazolate framework catalyst for the co-catalyst and solvent free synthesis of cyclic carbonates from CO2[J]. J CO2 Util,2016,15:123−130. doi: 10.1016/j.jcou.2016.02.005
    [97] KURUPPATHPARAMBIL R R, BABU R, JEONG H M, et al. A solid solution zeolitic imidazolate framework as a room temperature efficient catalyst for the chemical fixation of CO2[J]. Green Chem,2016,18(23):6349−6356. doi: 10.1039/C6GC01614F
    [98] MARCINIAK A A, LAMB K J, OZORIO L P, et al. Heterogeneous catalysts for cyclic carbonate synthesis from carbon dioxide and epoxides[J]. Curr Opin Green Sustainable Chem,2020,26:100365. doi: 10.1016/j.cogsc.2020.100365
    [99] XIANG W L, SHEN C Y, LU Z, et al. CO2 cycloaddition over ionic liquid immobilized hybrid zeolitic imidazolate frameworks: Effect of Lewis acid/base sites[J]. Chem Eng Sci,2021,233:116429. doi: 10.1016/j.ces.2020.116429
    [100] HU L H, MO X H, CHEN L, et al. Core-Shell ZIF-67@ CeO2 Nanosphere as efficient acid‐base catalyst for the cycloaddition of CO2 and epoxides[J]. ChemistrySelect,2022,7(20):e202200823.
    [101] ABRAHA Y W, TSAI C W, LANGNER E H G. De novo syntheses of multi-linker Zn-and Co-based ZIFs with application in CO2 fixation[J]. Microporous Mesoporous Mater,2022,346:112319. doi: 10.1016/j.micromeso.2022.112319
    [102] NGUYEN Q T, DO X H, CHO K Y, et al. Amine-functionalized bimetallic Co/Zn-zeolitic imidazolate frameworks as an efficient catalyst for the CO2 cycloaddition to epoxides under mild conditions[J]. J CO2 Util,2022,61:102061. doi: 10.1016/j.jcou.2022.102061
    [103] DU J, OUYANG H, TAN B. Porous organic polymers for catalytic conversion of carbon dioxide[J]. Chem Asian J,2021,16(23):3833−3850. doi: 10.1002/asia.202100991
    [104] ZHANG J S, QIAO Z A, MAHURIN S M, et al. Hypercrosslinked phenolic polymers with well‐developed mesoporous frameworks[J]. Angew Chem Int Ed,2015,54(15):4582−4586. doi: 10.1002/anie.201500305
    [105] XU S J, LUO Y L, TAN B. Recent development of hypercrosslinked microporous organic polymers[J]. Macromol Rap Commun,2013,34(6):471−484. doi: 10.1002/marc.201200788
    [106] LIANG J, CHEN R P, WANG X Y, et al. Postsynthetic ionization of an imidazole-containing metal-organic framework for the cycloaddition of carbon dioxide and epoxides[J]. Chem Sci,2017,8(2):1570−1575. doi: 10.1039/C6SC04357G
    [107] HOU S S, RAZZAQUE S, TAN B. Effects of synthesis methodology on microporous organic hyper-cross-linked polymers with respect to structural porosity, gas uptake performance and fluorescence properties[J]. Poly Chem,2019,10(11):1299−1311. doi: 10.1039/C8PY01730A
    [108] FU Z Y, JIA J Z, LI J, et al. Transforming waste expanded polystyrene foam into hyper-crosslinked polymers for carbon dioxide capture and separation[J]. Chem Eng J,2017,323:557−564. doi: 10.1016/j.cej.2017.04.090
    [109] PENG R X, CHEN G, ZHOU F, et al. Catalyst-free synthesis of triazine-based porous organic polymers for Hg2+ adsorptive removal from aqueous solution[J]. Chem Eng J,2019,371:260−266. doi: 10.1016/j.cej.2019.04.063
    [110] SANG Y F, SHU Z, WANG Y, et al. Bifunctional ionic hyper-cross-linked polymers for CO2 capture and catalytic conversion[J]. Appl Surf Sci,2022,585:152663. doi: 10.1016/j.apsusc.2022.152663
    [111] LIU C, SHI L, ZHANG J X, et al. One-pot synthesis of pyridine-based ionic hyper-cross-linked polymers with hierarchical pores for efficient CO2 capture and catalytic conversion[J]. Chem Eng J,2022,427:131633. doi: 10.1016/j.cej.2021.131633
    [112] GU J R, YUAN Y X, ZHAO T X, et al. Ionic-containing hyper-crosslinked polymer: A promising bifunctional material for CO2 capture and conversion[J]. Sep Purif Technol,2022,301:121971. doi: 10.1016/j.seppur.2022.121971
    [113] GAO R D, ZHANG G, LU F L, et al. Pyrrole-based conjugated microporous polymers as efficient heterogeneous catalysts for knoevenagel condensation[J]. Front Chem,2021,9:687183. doi: 10.3389/fchem.2021.687183
    [114] DONG X Z, HUI Y H, XIE S L, et al. Schiff base supported MCM-41 catalyzed the Knoevenagel condensation in water[J]. RSC Adv,2013,3(10):3222−3226. doi: 10.1039/c3ra00138e
    [115] ZHANG X F, LIU H, AN P F, et al. Delocalized electron effect on single metal sites in ultrathin conjugated microporous polymer nanosheets for boosting CO2 cycloaddition[J]. Sci Adv,2020,6(17):eaaz4824. doi: 10.1126/sciadv.aaz4824
    [116] BHUNIA S, MOLLA R A, KUMARI V, et al. Zn (ii) assisted synthesis of porous salen as an efficient heterogeneous scaffold for capture and conversion of CO2[J]. Chem Commun,2015,51(86):15732−15735. doi: 10.1039/C5CC06868A
    [117] ZHOU F Y, DENG Q W, HUANG N Y, et al. CO2 fixation into cyclic carbonates by a Zn-salen based conjugated microporous polymer[J]. ChemistrySelect,2020,5(34):10516−10520. doi: 10.1002/slct.202001538
    [118] JU P Y, QI W, GUO B X, et al. Highly stable and versatile conjugated microporous polymer for heterogeneous catalytic applications[J]. Catal Lett,2023,153:2125−2136.
    [119] LI H, LI C Z, CHEN J, et al. Synthesis of a pyridine-zinc-based porous organic polymer for the Co-catalyst-free cycloaddition of epoxides[J]. Chem Asian J,2017,12(10):1095−1103. doi: 10.1002/asia.201700258
    [120] WANG W L, WANG Y Q, LI C Y, et al. State-of-the-art multifunctional heterogeneous POP catalyst for cooperative transformation of CO2 to cyclic carbonates[J]. ACS Sustainable Chem Eng,2017,5(6):4523−4528. doi: 10.1021/acssuschemeng.7b00947
    [121] CHEN Y J, LUO R C, XU Q H, et al. Charged metalloporphyrin polymers for cooperative synthesis of cyclic carbonates from CO2 under ambient conditions[J]. ChemSusChem,2017,10(11):2534−2541. doi: 10.1002/cssc.201700536
    [122] GUO D, LI C, ZHANG J, et al. Metalloporphyrin-based porous organic polymer as an efficient catalyst for cycloaddition of epoxides and CO2[J]. J Solid State Chem,2021,293:121770. doi: 10.1016/j.jssc.2020.121770
    [123] DAI Z F, WANG S T, ZHOU N, et al. Novel porous organic polymers functionalized by metalloporphyrin and phosphonium salt for efficient synergistic catalysis of CO2 conversion under mild conditions[J]. New J Chem,2022,46(46):22151−22161. doi: 10.1039/D2NJ04210J
    [124] HAO Y J, YAN X L, CHANG T, et al. Hydroxyl-anchored covalent organic crown-based polymers for CO2 fixation into cyclic carbonates under mild conditions[J]. Sustainable Energy Fuels,2022,6(1):121−127. doi: 10.1039/D1SE01120K
    [125] HAO Y J, YAN X L, LIU X H, et al. Urea-based covalent organic crown polymers and KI electrostatic synergy in CO2 fixation reaction: A combined experimental and theoretical study[J]. J CO2 Util,2022,56:101867. doi: 10.1016/j.jcou.2021.101867
    [126] YUE Z X, HU T D, ZHAO W B, et al. Triazinyl-imidazole polyamide network as an efficient multi-hydrogen bond donor catalyst for additive-free CO2 cycloaddition[J]. Appl Catal A: Gen,2022,643:118748. doi: 10.1016/j.apcata.2022.118748
    [127] QIU Y J, CHEN Y J, LEI L, et al. Bottom-up oriented synthesis of metalloporphyrin-based porous ionic polymers for the cycloaddition of CO2 to epoxides[J]. Mol Catal,2022,521:112171. doi: 10.1016/j.mcat.2022.112171
    [128] CHEN Y, LI Y J, WANG H, et al. Facile construction of carboxyl-functionalized ionic polymer towards synergistic catalytic cycloaddition of carbon dioxide into cyclic carbonates[J]. Int J Mol Sci,2022,23(18):10879. doi: 10.3390/ijms231810879
    [129] WANG Y P, DUAN J X. Urea and thiourea-functionalized, pyridinium-based ionic polymers convert CO2 to cyclic carbonate under mild conditions[J]. ACS Appl Polym Mater,2022,4(8):5851−5860. doi: 10.1021/acsapm.2c00734
    [130] BANG S, JANG J Y, KO Y J K, et al. Hydroboration of hollow microporous organic polymers: A promising postsynthetic modification method for functional materials[J]. ACS Macro Lett,2022,11(8):1034−1040. doi: 10.1021/acsmacrolett.2c00385
    [131] ZHANG J W, LI X P, ZHU Z, et al. Hydroxylamino-anchored poly(ionic liquid)s for CO2 fixation into cyclic ccarbonates at mild conditions[J]. Adv Sustainable Syst,2021,5(1):202000133.
    [132] WANG P, Lv Q, TAO Y J, et al. One-pot efficient fixation of low-concentration CO2 into cyclic carbonate by mesoporous pyridine-functionalized binuclear poly (ionic liquid)s[J]. Mol Catal,2023,544:113157. doi: 10.1016/j.mcat.2023.113157
    [133] WANG Y P, NIE J Q, LU C F, et al. Imidazolium-based polymeric ionic liquids for heterogeneous catalytic conversion of CO2 into cyclic carbonates[J]. Microporous Mesoporous Mater,2020,292:109751. doi: 10.1016/j.micromeso.2019.109751
    [134] DU H L, YE Y F, XU P, et al. Experimental and theoretical study on dicationic imidazolium derived poly(ionic liquid)s for catalytic cycloaddition of CO2-epoxide[J]. J CO2 Util,2023,67:102325. doi: 10.1016/j.jcou.2022.102325
    [135] LIU Y F, DONG L, WANG Y C, et al. Polymeric ionic liquid membranes for the absorption-conversion of CO2 and epoxides into cyclic carbonates[J]. Mol Catal,2022,530:112597. doi: 10.1016/j.mcat.2022.112597
    [136] CHANG T, YAN X L, LI Y, et al. Quaternary ammonium immobilized PAMAM as efficient catalysts for conversion of carbon dioxide[J]. J CO2 Util,2022,58:101913. doi: 10.1016/j.jcou.2022.101913
    [137] YAN T, LIU H, ZENG Z X, et al. Recent progress of catalysts for synthesis of cyclic carbonates from CO2 and epoxides[J]. J CO2 Util,2023,68:102355. doi: 10.1016/j.jcou.2022.102355
  • 加载中
图(42) / 表(1)
计量
  • 文章访问数:  533
  • HTML全文浏览量:  127
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-13
  • 修回日期:  2023-05-27
  • 录用日期:  2023-05-29
  • 网络出版日期:  2023-09-01
  • 刊出日期:  2024-01-09

目录

    /

    返回文章
    返回