留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱处理对ZnZrOx/SAPO-34催化合成气一步法制低碳烯烃的影响

王弋 汪旭东 薛招腾 毛东森

王弋, 汪旭东, 薛招腾, 毛东森. 碱处理对ZnZrOx/SAPO-34催化合成气一步法制低碳烯烃的影响[J]. 燃料化学学报(中英文), 2024, 52(2): 140-149. doi: 10.19906/j.cnki.JFCT.2023053
引用本文: 王弋, 汪旭东, 薛招腾, 毛东森. 碱处理对ZnZrOx/SAPO-34催化合成气一步法制低碳烯烃的影响[J]. 燃料化学学报(中英文), 2024, 52(2): 140-149. doi: 10.19906/j.cnki.JFCT.2023053
WANG Yi, WANG Xudong, XUE Zhaoteng, MAO Dongsen. Effect of alkali treatment on ZnZrOx/SAPO-34 bifunctional catalyst for catalytic synthesis of light olefins from syngas[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 140-149. doi: 10.19906/j.cnki.JFCT.2023053
Citation: WANG Yi, WANG Xudong, XUE Zhaoteng, MAO Dongsen. Effect of alkali treatment on ZnZrOx/SAPO-34 bifunctional catalyst for catalytic synthesis of light olefins from syngas[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 140-149. doi: 10.19906/j.cnki.JFCT.2023053

碱处理对ZnZrOx/SAPO-34催化合成气一步法制低碳烯烃的影响

doi: 10.19906/j.cnki.JFCT.2023053
基金项目: 上海市自然科学基金(20ZR1455500)和上海应用技术大学协同创新基金(XTCX2023-03)资助
详细信息
    通讯作者:

    Tel: 021-60877232, E-mail: ztxue@sit.edu.cn

    dsmao@sit.edu.cn

  • 中图分类号: O643.3

Effect of alkali treatment on ZnZrOx/SAPO-34 bifunctional catalyst for catalytic synthesis of light olefins from syngas

Funds: The project was supported by the Shanghai Natural Science Foundation (20ZR1455500) and the Shanghai Institute of Technology Collaborative Innovation Fund (XTCX2023-03)
  • 摘要: 采用ZnZrOx金属氧化物和SAPO-34分子筛物理混合制备了双功能催化剂,用于合成气一步法制低碳烯烃(STO)反应。考察了三乙胺、四甲基氢氧化铵和四乙基氢氧化铵三种有机碱溶液及不同浓度的三乙胺溶液处理对SAPO-34分子筛织构、结构和酸性的影响,采用XRD、SEM、N2吸附-脱附、NH3-TPD对分子筛进行了表征,并考察了碱处理后催化剂的STO反应性能。结果表明,采用0.06 mol/L的三种有机碱后处理均可在SAPO-34分子筛表面刻蚀出部分多级孔道,从而在STO反应中加速金属氧化物表面形成的中间过渡物种从金属氧化物表面扩散进入SAPO-34分子筛孔道,提高了催化剂在STO反应中CO的转化率,同时,三种碱处理均可降低SAPO-34分子筛的酸量及酸强度,从而提高催化剂在STO反应中低碳烯烃选择性;采用0.02−0.10 mol/L的三乙胺处理SAPO-34分子筛,均在SAPO-34分子筛表面刻蚀出的多级孔,提高了STO反应中CO的转化率,且0.02和0.06 mol/L的三乙胺溶液处理后的SAPO-34分子筛,酸强度和酸量的降低,抑制了甲烷的形成和烯烃的加氢,因此,随着碱处理浓度从0、0.02到0.06 mol/L逐步提高,催化剂对低碳烯烃的选择性逐步提高。其中,在400 ℃,3.0 MPa和GHSV=3600 mL/(g∙h)条件下,采用0.06 mol/L的三乙胺处理的SAPO-34物理混合ZnZrOx,与未经处理的SAPO-34分子筛相比,CO转化率从24.0%提升至26.4%,低碳烯烃选择性从78.2%提升至84.7%,且该催化剂具有较好的催化稳定性。
  • FIG. 2923.  FIG. 2923.

    FIG. 2923.  FIG. 2923.

    图  1  ZnZrOx氧化物的XRD谱图

    Figure  1  XRD spectrum of ZnZrOx

    图  2  ZnZrOx氧化物的SEM照片

    Figure  2  SEM image of ZnZrOx

    图  3  不同碱处理SAPO-34分子筛的XRD谱图

    Figure  3  XRD spectra of SAPO-34 after treatment with different alkalis

    图  4  不同碱处理SAPO-34分子筛的SEM照片

    Figure  4  SEM images of SAPO-34 after treatment with different alkalis

    图  5  不同碱处理的SAPO-34分子筛NH3-TPD谱图

    Figure  5  NH3-TPD profiles of SAPO-34 zeolite treated with different alkalis

    图  6  不同浓度三乙胺溶液处理SAPO-34分子筛的XRD谱图

    Figure  6  XRD spectra of SAPO-34 treated with different concentrations of triethylamine solutions

    图  7  不同浓度三乙胺溶液处理SAPO-34分子筛的SEM照片

    Figure  7  SEM images of SAPO-34 treated with different concentrations of triethylamine solutions

    图  8  不同浓度三乙胺溶液处理的SAPO-34分子筛NH3-TPD谱图

    Figure  8  NH3-TPD profiles of SAPO-34 zeolite treated with different concentrations of triethylamine solutions

    图  9  ZnZrOx-16/S-1-006催化剂的稳定性测试

    Figure  9  Stability test for ZnZrOx-16/S-1-006 catalyst

    表  1  不同碱处理的SAPO-34分子筛的结构性质

    Table  1  Structural properties of SAPO-34 after treatment with different alkalis

    SampleABET/
    (m2·g−1)
    Amicro/
    (m2·g−1)
    vtotal/
    (cm3·g−1)
    vmicro/
    (cm3·g−1)
    Relative
    crystallinitya
    S-05155050.290.26100
    S-1-0064904870.300.2680.7
    S-2-0064714650.260.2475.8
    S-3-0064904850.280.2581.6
    a : The crystallinity of S-0 is defined as 100%.
    下载: 导出CSV

    表  2  不同碱处理的SAPO-34分子筛的酸性

    Table  2  Acid data of SAPO-34 zeolite treated with different alkalis

    SampleWeak acid peak areaStrong acid peak areaTotal acid peak area
    S-0348349697
    S-1-006282253535
    S-2-006162242404
    S-3-006324339663
    下载: 导出CSV

    表  3  由不同碱处理SAPO-34分子筛和ZnZrOx 组成的双功能催化剂的催化性能

    Table  3  Catalytic property of bifunctional catalysts composed of SAPO-34 treated with different alkalis and ZnZrOx

    CatalystCO
    conversion/%
    CO2
    selectivity/%
    Hydrocarbon distribution/%
    CH4${\rm{C} }_{2} ^{0}-{\rm{C} }_{4}^{0} $${\rm{C} }_{2} ^{=}-{\rm{C} }_{4}^{=} $
    ZnZrOx/S-024.038.18.613.178.2
    ZnZrOx/S-1-00626.439.52.912.484.7
    ZnZrOx/S-2-00625.940.88.930.460.7
    ZnZrOx/S-3-00630.640.53.619.377.1
    Reaction conditions: t=400 ℃, p=3.0 MPa, GHSV=3600 mL/(g∙h), CO:H2=1:2(vol/vol).
    下载: 导出CSV

    表  4  不同浓度三乙胺溶液处理的SAPO-34分子筛的结构性质

    Table  4  Structural properties of SAPO-34 treated with different concentrations of triethylamine solutions

    SampleABET/(m2·g−1)Amicro/(m2·g−1)vtotal/(cm3·g−1)vmicro/(cm3·g−1)Relative crystallinitya
    S-05155050.290.26100
    S-1-0025115050.290.2690.4
    S-1-0064905870.300.2680.7
    S-1-0104734650.270.2478.3
    a : The crystallinity of S-0 is defined as 100%.
    下载: 导出CSV

    表  5  不同浓度三乙胺溶液处理的SAPO-34分子筛的酸性

    Table  5  Acid data of SAPO-34 zeolite treated with different concentrations of triethylamine solutions

    SampleWeak acid peak areaStrong acid peak areaTotal acid peak area
    S-0348349697
    S-1-002328340668
    S-1-006282253535
    S-1-010277245522
    下载: 导出CSV

    表  6  由不同浓度三乙胺溶液处理SAPO-34分子筛和和ZnZrO x 组成的双功能催化剂的催化性能

    Table  6  Catalytic property of bifunctional catalysts composed of SAPO-34 treated with different concentrations of triethylamine solutions and ZnZrOx

    CatalystCO
    conversion/
    %
    CO2
    selectivity/
    %
    Hydrocarbon
    distribution/%
    CH4${\rm{C} }_{2} ^{0}-{\rm{C} }_{4}^{0}$${\rm{C} }_{2} ^{=}-{\rm{C} }_{4}^{=}$
    ZnZrOx/S-024.038.18.613.178.2
    ZnZrOx/S-1-00225.238.82.415.582.1
    ZnZrOx/S-1-00626.439.52.912.484.7
    ZnZrOx/S-1-01025.440.56.917.475.7
    Reaction conditions: t=400 ℃, p=3.0 MPa, GHSV=3600 mL/(g∙h), CO:H2=1:2(vol/vol).
    下载: 导出CSV

    表  7  不同双功能催化剂催化性能的比较

    Table  7  Comparison of catalytic performance of different bifunctional catalysts

    CatalystTemperature
    /℃
    Space velocity/(mL∙g−1∙h−1)Pressure/MPaCO conv./%${\rm{C} }_{2} ^{=}-{\rm{C} }_{4}^{=}$ sel./%Ref.
    ZnZrOx/S-1-00640036003.026.484.7this work
    MG-AH/SAPO-3440048752.519.581.2[19]
    ZrCeZnOx/SAPO-3440039001.025.678.6[28]
    ZnCr2O4/SAPO-3440048003.01164[29]
    ZnO-ZrO2/SAPO-3440048001.07.069[30]
    ZnZrOx/SSZ-1340018003.02375[26]
    ZnZrO/MSAPO40077142.51780[13]
    ZnZrOx/AIPO-1839012004.025.245[7]
    ZnAl2Ox/SAPO-1840045003.034.870.7[6]
    下载: 导出CSV
  • [1] ZHANG P, MENG F, LI X, et al. Excellent selectivity for direct conversion of syngas to light olefins over a Mn-Ga oxide and SAPO-34 bifunctional catalyst[J]. Catal Sci Technol,2019,9(20):5577−5581. doi: 10.1039/C9CY01348B
    [2] FONSECA N, DOS SANTOS L R M, CERQUEIRA H S, et al. Olefins production from cracking of a Fischer-Tropsch naphtha[J]. Fuel,2021,95:183−189.
    [3] JOO E, PARK S, LEE M. Pyrolysis reaction mechanism for industrial naphtha cracking furnaces[J]. Ind Eng Chem Res,2001,40(11):2409−2415. doi: 10.1021/ie000774o
    [4] GONG F, YANG Z, HONG C, et al. Selective conversion of bio-oil to light olefins: Controlling catalytic cracking for maximum olefins[J]. Bioresour Technol,2011,102(19):9247−9254. doi: 10.1016/j.biortech.2011.07.009
    [5] AL-SHAMMARI A A, ALI S A, AL-YASSIR N, et al. Catalytic cracking of heavy naphtha-range hydrocarbons over different zeolites structures[J]. Fuel Process Technol,2014,122:12−22. doi: 10.1016/j.fuproc.2014.01.021
    [6] 李保珍, 孟凡会, 王丽娜, 等. 合成气制低碳烯烃串联反应中Zn-Al氧化物的制备及性能[J]. 燃料化学学报(中英文),2023,51(1):111−119.

    LI Baozhen, MENG Fanhui, WANG Lina, et al. Study on preparation and catalytic performance of Zn-Al oxides for tandem reaction of syngas conversion into light olefins[J]. J Fuel Chem Technol,2023,51(1):111−119.
    [7] SU J, ZHOU H, LIU S, et al. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts[J]. Nat Commun,2019,10(1):1297. doi: 10.1038/s41467-019-09336-1
    [8] VAN DEELEN T W, HERNÁNDEZ MEJÍA C, DE JONG K P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity[J]. Nat Catal,2019,2(11):955−970. doi: 10.1038/s41929-019-0364-x
    [9] LI S, LIU X, LU Y. Fischer-Trospch to olefins over hydrophobic FeMnOx@SiO2 catalysts: The effect of SiO2 shell content[J]. Appl Catal A: Gen,2022,635:118552. doi: 10.1016/j.apcata.2022.118552
    [10] GONG K, LIN T, AN Y, et al. Fischer-Tropsch to olefins over CoMn-based catalysts: Effect of preparation methods[J]. Appl Catal A: Gen,2020,592:117414. doi: 10.1016/j.apcata.2020.117414
    [11] WANG M, WANG Z, LIU S, et al. Synthesis of hierarchical SAPO-34 to improve the catalytic performance of bifunctional catalysts for syngas-to-olefins reactions[J]. Chin J Catal,2021,349:181−192.
    [12] 刘赛赛, 姚金刚, 陈冠益, 等. 合成气一步法制备低碳烯烃和液体燃料催化剂研究进展[J]. 燃料化学学报(中英文),2023,51(1):34−51.

    LIU Saisai, YAO Jingang, CHEN Guanyi, et al. One-step catalyst for the preparation of light olefins and liquid fuels from syngas[J]. J Fuel Chem Technol,2023,51(1):34−51.
    [13] JIAO F, LI J, PAN X, et al. Selective conversion of syngas to light olefins[J]. Science,2016,351(6277):1065−1068. doi: 10.1126/science.aaf1835
    [14] MENG F, LIANG X, WANG L, et al. Rational design of SAPO-34 zeolite in bifunctional catalysts for syngas conversion into light olefins[J]. Ind Eng Chem Res,2022,61(31):11397−11406. doi: 10.1021/acs.iecr.2c01111
    [15] 皂辉杰, 姚金刚, 刘静, 等. 合成气一步法直接制低碳烯烃双功能催化剂研究新进展[J]. 燃料化学学报(中英文),2023,51(1):19−33.

    ZAO Huijie, YAO Jingang, LIU Jing, et al. New research progress on bifunctional catalysts for one-step direct production of low carbon olefins from syngas[J]. J Fuel Chem Technol,2023,51(1):19−33.
    [16] 庹杰, 李石擎, 徐浩, 等. 分子筛结构设计及酸性调控在合成气催化转化中的应用进展[J]. 燃料化学学报(中英文),2023,51(1):1−18. doi: 10.1016/S1872-5813(22)60035-5

    TUO Jie, LI Shiqing, XU Hao, et al. A progress of structure design and acidity tunning of zeolites in catalytic syngas conversion[J]. J Fuel Chem Technol,2023,51(1):1−18. doi: 10.1016/S1872-5813(22)60035-5
    [17] HUANG Y, MA H, XU Z, et al. Role of nanosized sheet-like SAPO-34 in bifunctional catalyst for syngas-to-olefins reaction[J]. Fuel,2022,273:117771.
    [18] 魏晓娜, 李文双, 陈诗通, 等. 不同酸性SAPO-34分子的制备及催化合成气制低碳烯烃性能研究[J]. 工业催化,2022,30(2):41−47. doi: 10.3969/j.issn.1008-1143.2022.02.007

    WEI Xiaona, LI Wenshuang, CHENG Shitong, et al. Synthesis of SAPO-34 zeolites with different acidity and their catalytic performance in syngas to olefins reaction[J]. Catal Ind,2022,30(2):41−47. doi: 10.3969/j.issn.1008-1143.2022.02.007
    [19] YANG G, MENG F, ZHANG P, et al. Effect of preparation method and precipitant on Mn-Ga oxide in combination with SAPO-34 for syngas conversion into light olefins[J]. Catal Sci Technol,2021,45(18):7967−6976.
    [20] LIU X, REN S, ZENG G, et al. Coke suppression in MTO over hierarchical SAPO-34 zeolites[J]. RSC Adv,2016,6(34):28787−28791. doi: 10.1039/C6RA02282K
    [21] VERBOEKEND D, MILINA M, PÉEZ-RAMÍREZ J. Hierarchical silicoaluminophosphates by postsynthetic modification: Influence of topology, composition, and silicon distribution[J]. Chem Mater,2014,26(15):4552−4562. doi: 10.1021/cm501774s
    [22] SUN C, WANG Y, WANG Z, et al. Fabrication of hierarchical ZnSAPO-34 by alkali treatment with improved catalytic performance in the methanol-to-olefin reaction[J]. C R Chim,2018,21(1):61−70. doi: 10.1016/j.crci.2017.11.006
    [23] LI Z, MARTÍNEZ-TRIGUERO J, CONCEPCIÓN P, et al. Methanol to olefins: Activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution[J]. Phys Chem Chem Phys,2013,15(35):14670−14680. doi: 10.1039/c3cp52247d
    [24] LIU X, ZHOU W, YANG Y, et al. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci,2018,9(20):4708−4718. doi: 10.1039/C8SC01597J
    [25] KARGER J, RUTHVEN D M. Diffusion in nanoporous materials: Fundamental principles, insights and challenges[J]. New J Chem, 2016, 40(5): 4027-4048.
    [26] SCHNEIDER D, MEHLHORN D, ZEIGERMANN P. Transport properties of hierarchical micromesoporous materials[J]. Chem Soc Rev,2016,45(12):3439−3467. doi: 10.1039/C5CS00715A
    [27] JADAV D, BANDYOPADHYAY R, BANDYOPADHYAY M. Synthesis of hierarchical SAPO-5 & SAPO-34 materials by post‐synthetic alkali treatment and their enhanced catalytic activity in transesterification[J]. Eur J Inorg Chem,2020,2020(10):847−853. doi: 10.1002/ejic.201901250
    [28] MENG F, LI X, ZHANG P, et al. Highly active ternary oxide ZrCeZnOx combined with SAPO-34 zeolite for direct conversion of syngas into light olefins[J]. Catal Today,2021,368:118−125. doi: 10.1016/j.cattod.2020.03.023
    [29] ZHANG L, LIANG D, WANG Y, et al. Design of the core-shell catalyst: An effective strategy for suppressing side reactions in syngas to light olefins direct selective conversion[J]. Chem Sci,2020,11(16):4097−4105. doi: 10.1039/C9SC05544D
    [30] CHENG K, GU B, LIU X, et al. Direct and highly selective conversion of synthesis gas into lower olefins: Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed,2016,55(15):4725−4728. doi: 10.1002/anie.201601208
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  48
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-13
  • 修回日期:  2023-06-30
  • 录用日期:  2023-06-30
  • 网络出版日期:  2023-09-01
  • 刊出日期:  2024-02-02

目录

    /

    返回文章
    返回