留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

γ-Mo2N/C催化剂的合成及其甲酸脱氢性能研究

路军 王美君 王志青 董立波 余钟亮 常丽萍

路军, 王美君, 王志青, 董立波, 余钟亮, 常丽萍. γ-Mo2N/C催化剂的合成及其甲酸脱氢性能研究[J]. 燃料化学学报(中英文), 2024, 52(1): 76-86. doi: 10.19906/j.cnki.JFCT.2023063
引用本文: 路军, 王美君, 王志青, 董立波, 余钟亮, 常丽萍. γ-Mo2N/C催化剂的合成及其甲酸脱氢性能研究[J]. 燃料化学学报(中英文), 2024, 52(1): 76-86. doi: 10.19906/j.cnki.JFCT.2023063
LU Jun, WANG Meijun, WANG Zhiqing, DONG Libo, YU Zhongliang, CHANG Liping. Synthesis of γ-Mo2N/C catalysts and its performance on formic acid dehydrogenation[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 76-86. doi: 10.19906/j.cnki.JFCT.2023063
Citation: LU Jun, WANG Meijun, WANG Zhiqing, DONG Libo, YU Zhongliang, CHANG Liping. Synthesis of γ-Mo2N/C catalysts and its performance on formic acid dehydrogenation[J]. Journal of Fuel Chemistry and Technology, 2024, 52(1): 76-86. doi: 10.19906/j.cnki.JFCT.2023063

γ-Mo2N/C催化剂的合成及其甲酸脱氢性能研究

doi: 10.19906/j.cnki.JFCT.2023063
详细信息
    通讯作者:

    E-mail: wangmeijun@tyut.edu.cn

  • 中图分类号: TQ116.2

Synthesis of γ-Mo2N/C catalysts and its performance on formic acid dehydrogenation

  • 摘要: 甲酸 (FA) 因其H含量较高 (4.4%)、易产H2、可经小平台化合物合成等优势受到广泛关注,而γ-Mo2N/C对FA沿H2和CO2路径分解具有非常高的选择性,产生CO极少,显示出较高的应用价值。基于此,本研究采用对苯二胺和钼酸铵水溶液经前驱体制备γ-Mo2N/C催化剂,并对其FA分解性能进行了原位评价,采用热重分析 (TG)、X射线衍射 (XRD)、傅里叶变换红外光谱 (FT-IR)、扫描电镜 (SEM)、透射电镜 (TEM) 等表征手段对催化剂的结构和表面官能团进行了分析,利用DFT对FA在γ-Mo2N (200) 晶面的吸附构型进行了计算,在此基础上,对催化剂性能及FA在其表面的分解机理进行了研究。结果表明,γ-Mo2N/C在较低温度下即可表现出极高的催化活性,提高γ-Mo2N在C载体上的分散性能有效改善FA转化率。对苯二胺与钼酸铵的物质的量比为4∶1时,催化性能最佳,在160 ℃、100 h的FA分解实验中,催化剂性能稳定、H2选择性高(N2 40 mL/min, CO<5.0×10−5)。而DFT计算表明,FA中O−H键的H原子与γ-Mo2N/C (200) 晶面上N原子结合的可能性更大,而C=O键的O原子更有可能与γ-Mo2N/C (200) 晶面上Mo原子结合。上述结果有助于明确FA在γ-Mo2N/C作用下的分解机理,也显示出非贵金属催化剂γ-Mo2N/C在FA分解制H2方面潜在的应用前景。
  • FIG. 2882.  FIG. 2882.

    FIG. 2882.  FIG. 2882.

    图  1  不同温度下FA分解ΔG

    Figure  1  Two decomposition ΔG of FA at different temperatures

    图  2  反应器装置示意图

    Figure  2  Schematic diagram of the reactor

    图  3  γ-Mo2N/C前驱体的TG曲线

    Figure  3  TG result of γ-Mo2N/C precursor

    (a) Mass loss ration and DTG curves during γ-Mo2N/C pyrolysis at 700 ℃; (b) Transformation ratio of γ-Mo2N/C at different temperatures.

    图  4  高温合成后γ-Mo2N/C形貌

    Figure  4  γ-Mo2N/C morphology after high temperature synthesis

    图  5  不同γ-Mo2N/C的XRD谱图

    Figure  5  The XRD results of different γ-Mo2N/C (a): XRD patterns of γ-Mo2N/C synthesised by pyrolysis at different temperatures; (b): XRD patterns of C carriers synthesized at 700 ℃ and different ratios of γ-Mo2N/C after reaction with formic acid; (c): XRD patterns of C carriers and different ratios of γ-Mo2N/C at 700 ℃ after passivation with oxygen.

    图  6  700 ℃ 不同对苯二胺与钼酸铵比例合成的γ-Mo2N/C的XRD谱图

    Figure  6  The XRD results of γ-Mo2N/C synthesized at 700 ℃ with different ratios of p-phenylenediamine to ammonium molybdate

    图  7  700 ℃合成不同比例催化剂的N2 吸附-解吸等温线 (a) 和孔径分布 (b)

    Figure  7  N2 adsorption and desorption isotherms (a) and pore size distribution (b) for the synthesis of different ratios of catalysts at 700 ℃

    图  8  700 ℃合成不同比例催化剂的扫描电镜照片

    Figure  8  Scanning electron microscope images of different scales of catalysts synthesised at 700 ℃

    图  9  700 ℃合成不同比例催化剂的透射电镜照片

    Figure  9  Transmission electron microscopy images of different scales of catalysts synthesised at 700 ℃

    图  10  催化剂表面的红外光谱谱图

    Figure  10  FF-IR spectra of the catalyst surface

    图  11  700 ℃ NM-4∶1的高分辨XPS谱图

    Figure  11  High-resolution XPS spectra of NM-4∶1 at 700 ℃ (a): Survey; (b): C 1s; (c): Mo 3d; (d): N 1s.

    图  12  催化剂200晶体表面上FA的吸附状态

    Figure  12  Adsorption state of FA on the surface of Catalyst 200 crystals (a): main view; (b): side view; (c): top view.

    图  13  700 ℃下不同合成比例的γ-Mo2N/C在不同温度下分解FA的H2选择性和FA转化率及C载体的FA转化率与其XRD谱图

    Figure  13  H2 selectivity and FA conversion of different synthetic ratios on γ-Mo2N/C at 700 ℃ for the decomposition of FA at different temperatures and FA conversion of C carriers with their XRD patterns (a): FA conversion on γ-Mo2N/C; (b): H2 selectivity; (c): FA conversion over C carriers; (d): XRD spectra of C carriers.

    图  14  700 ℃ NM-4∶1在160 ℃分解FA的稳定性测试(a)和测试后的XRD谱图 (b)

    Figure  14  Stability test of NM-4∶1 at 700 ℃ for decomposition of FA at 160 ℃ (a) and XRD pattern after the test (b)

    表  1  不同温度下获得的γ-Mo2N/C的N和H含量

    Table  1  N and H contents of γ-Mo2N/C obtained at different temperatures

    Pyrolysis temperature/℃N w/%H w/%
    50014.921.80
    55012.451.50
    60010.071.35
    6507.520.92
    7005.750.65
    7502.760.58
    8002.540.44
    下载: 导出CSV

    表  2  700 ℃下不同比例催化剂Mo质量分数

    Table  2  Mo content of different ratios of catalysts at 700 ℃

    SampleMo
    (SEM-EDS, %)
    Mo
    (ICP-MS, %)
    Moδ+
    (XPS, atomic %)
    NM-1∶147.5268.160.64
    NM-2∶139.0259.210.38
    NM-3∶121.4446.480.22
    NM-4∶115.5635.800.15
    NM-5∶114.3633.200.07
    下载: 导出CSV

    表  3  不同合成比例下FA评价后与钝化后获得的γ-Mo2N/C的N和C质量分数

    Table  3  N and C contents of γ-Mo2N/C obtained after formic acid reaction and passivation at different synthesis ratios

    Composite rationN w/%C w/%
    NM-1∶1re1.2527.94
    NM-1∶1pa1.2828.27
    NM-2∶1 re1.8642.42
    NM-2∶1 pa2.1440.48
    NM-3∶1 re2.2846.37
    NM-3∶1 pa2.3446.16
    NM-4∶1re2.5354.38
    NM-4∶1pa2.7752.86
    NM-5∶1re2.9855.52
    NM-5∶1pa3.0153.70
    re: evaluation of the catalyst after testing; pa: passivated catalyst.
    下载: 导出CSV

    表  4  700 ℃合成不同比例催化剂的物理性质

    Table  4  Physical properties of catalysts for the synthesis of different ratios of catalysts at 700 ℃

    SampleSurface area/(m2·g−1)Pore volume/(cm3·g−1)Macropore ratio/
    %
    NM-1∶1 6.520.0743.28
    NM-2∶113.440.1352.44
    NM-3∶113.970.1553.08
    NM-4∶117.060.2059.20
    NM-5∶113.880.1646.86
    下载: 导出CSV

    表  5  钝化和评价后的γ-Mo2N/C的元素分析

    Table  5  Elemental content of γ-Mo2N/C after passivation and evaluation

    SampleElement abundance w /%
    NCH
    Fresh2.5453.700.77
    Long term2.7855.550.76
    下载: 导出CSV

    表  6  钝化和评价后的γ-Mo2N/C的物理特性

    Table  6  Physical properties of γ-Mo2N/C after passivation and evaluation

    SampleSurface area/(m2·g−1)Pore volume/(cm3·g−1)Macropore
    ratio/%
    Fresh17.060.2059.20
    Long term16.240.1158.00
    下载: 导出CSV
  • [1] STAFFELL I, SCAMMAN D, ABAD A V, et al. The role of hydrogen and fuel cells in the global energy system[J]. Energy Environ Sci,2019,12(2):463−491. doi: 10.1039/C8EE01157E
    [2] LEBROUHI B E, DJOUPO J J, LAMRANI B, et al. Global hydrogen development a technological and geopolitical overview[J]. Int J Hydrog Energy,2022,47(11):7016−7048. doi: 10.1016/j.ijhydene.2021.12.076
    [3] ZHANG F, ZHAO P C, NIU M, et al. The survey of key technologies in hydrogen energy storage[J]. Int J Hydrog Energy,2016,41(33):14535−14552. doi: 10.1016/j.ijhydene.2016.05.293
    [4] PREUSTER P, PAPP C, WASSERSCHEID P. Liquid organic hydrogen carriers (LOHCs): Toward a hydrogen free hydrogen economy[J]. Acc Chem Res,2017,50(1):74−85. doi: 10.1021/acs.accounts.6b00474
    [5] SINGH A K, SINGH S, KUMAR A. Hydrogen energy future with formic acid: A renewable chemical hydrogen storage system[J]. Catal Sci Technol,2016,6(1):12−40. doi: 10.1039/C5CY01276G
    [6] PREUSTER P, ALBERT J. Biogenic formic acid as a green hydrogen carrier[J]. Energy Technol,2018,6(3):501−509. doi: 10.1002/ente.201700572
    [7] LANG C G, JIA Y, YAO X D. Recent advances in liquid-phase chemical hydrogen storage[J]. Energy Storage Mater,2020,26:290−312. doi: 10.1016/j.ensm.2020.01.010
    [8] BULUSHEV D A, ROSS J R H. Heterogeneous catalysts for hydrogenation of CO2 and bicarbonates to formic acid and formates[J]. Catal Rev-Sci Eng,2018,60(4):566−593. doi: 10.1080/01614940.2018.1476806
    [9] BULUSHEV D A, ROSS J R H. Towards sustainable production of formic acid[J]. ChemSusChem,2018,11(5):821−836. doi: 10.1002/cssc.201702075
    [10] NEMATOLLAHI P, MA H Y, SCHNEIDER W F, et al. DFT and microkinetic comparison of Ru-doped porphyrin-like graphene and nanotubes toward catalytic formic acid decomposition and formation[J]. J Phys Chem C,2021,125(34):18673−18683. doi: 10.1021/acs.jpcc.1c03914
    [11] LI Y S, HE Y L, YANG W W. A high-performance direct formate-peroxide fuel cell with palladium gold alloy coated foam electrodes[J]. J Power Sources,2015,278:569−573. doi: 10.1016/j.jpowsour.2014.12.064
    [12] YU X W, MANTHIRAM A. Catalyst selective, scalable membraneless alkaline direct formate fuel cells[J]. Appl Catal B: Environ,2015,165:63−67. doi: 10.1016/j.apcatb.2014.09.069
    [13] COPENHAVER T S, PUROHIT K H, DOMALAON K, et al. A microfluidic direct formate fuel cell on paper[J]. Electrophoresis,2015,36(16):1825−1829. doi: 10.1002/elps.201400554
    [14] VO T, PUROHIT K, NGUYEN C, et al. Formate: An energy storage and transport bridge between carbon dioxide and a formate fuel cell in a single device[J]. ChemSusChem,2015,8(22):3853−3858. doi: 10.1002/cssc.201500958
    [15] LI J J, CHEN W, ZHAO H, et al. Size-dependent catalytic activity over carbon-supported palladium nanoparticles in dehydrogenation of formic acid[J]. J Catal,2017,352:371−381. doi: 10.1016/j.jcat.2017.06.007
    [16] MONTANDON-CLERC M, DALEBROOK A F, LAURENCZY G. Quantitative aqueous phase formic acid dehydrogenation using iron(II) based catalysts[J]. J Catal,2016,343:62−67. doi: 10.1016/j.jcat.2015.11.012
    [17] CHEN H L, JIANG D C, SUN Z J, et al. Cobalt nitride as an efficient cocatalyst on CdS nanorods for enhanced photocatalytic hydrogen production in water[J]. Catal Sci Technol,2017,7(7):1515−1522. doi: 10.1039/C7CY00046D
    [18] SUN Z, CHEN H, ZHANG L, et al. Enhanced photocatalytic H2 production on cadmium sulfide photocatalysts using nickel nitride as a novel cocatalyst[J]. J Mater Chem A,2016,4(34):13289−13295. doi: 10.1039/C6TA04696G
    [19] DHANASEKARAN P, SALUNKE H G, GUPTA N M. Visible-light-induced photosplitting of water over γ′-Fe4N and γ′-Fe4N/α-Fe2O3 Nanocatalysts[J]. J Phys Chem C,2012,116(22):12156−12164. doi: 10.1021/jp303255f
    [20] MENG X J, QI W L, KUANG W D, et al. Chromium-titanium nitride as an efficient co-catalyst for photocatalytic hydrogen production[J]. J Mater Chem A,2020,8(31):15774−15781. doi: 10.1039/D0TA00488J
    [21] TOMINAGA H, NAGAI M. Reaction mechanism for hydrodenitrogenation of carbazole on molybdenum nitride based on DFT study[J]. Appl Catal A: Gen,2010,389(1/2):195−204. doi: 10.1016/j.apcata.2010.09.020
    [22] GHAMPSON I T, SEPULVEDA C, GARCIA R, et al. Hydrodeoxygenation of guaiacol over carbon-supported molybdenum nitride catalysts: Effects of nitriding methods and support properties[J]. Appl Catal A: Gen,2012,439−440:111−124. doi: 10.1016/j.apcata.2012.06.047
    [23] SONG Y J, YUAN Z Y. One-pot synthesis of Mo2N/NC catalysts with enhanced electrocatalytic activity for hydrogen evolution reaction[J]. Electrochim Acta,2017,246:536−543. doi: 10.1016/j.electacta.2017.06.086
    [24] YU Z L, AN X W, KURNIA I, et al. Full spectrum decomposition of formic acid over γ-Mo2N-based catalysts: From dehydration to dehydrogenation[J]. ACS Catal,2020,10(9):5353−5361. doi: 10.1021/acscatal.0c00752
    [25] KANAZAWA S, YAMADA Y, SATO S. Infrared spectroscopy of graphene nanoribbons and aromatic compounds with sp3C−H (methyl or methylene groups)[J]. J Mater Sci,2021,56(21):12285−12314. doi: 10.1007/s10853-021-06001-1
    [26] LIN H, LONG J, GU Q, et al. In situ IR study of surface hydroxyl species of dehydrated TiO2: Towards understanding pivotal surface processes of TiO2 photocatalytic oxidation of toluene[J]. Phys Chem Chem Phys,2012,14(26):9468−9474. doi: 10.1039/c2cp40893g
    [27] CHEN T, WU G P, FENG Z C, et al. In situ FT-IR study of photocatalytic decomposition of formic acid to hydrogen on Pt/TiO2 catalyst[J]. Chin J Catal,2008,29(2):105−107. doi: 10.1016/S1872-2067(08)60019-4
    [28] LV Z, TAHIR M, LANG X W, et al. Well dispersed molybdenum nitrides on a nitrogen-doped carbon matrix for highly efficient hydrogen evolution in alkaline media[J]. J Mater Chem A,2017,5(39):20932−20937. doi: 10.1039/C7TA06981B
    [29] GANIYU S A, ALHOOSHANI K, ALI S A. Single pot synthesis of Ti-SBA-15-NiMo hydrodesulfurization catalysts: Role of calcination temperature on dispersion and activity[J]. Appl Catal B: Environ,2017,203:428−441. doi: 10.1016/j.apcatb.2016.10.052
    [30] TRILLO J M, MUNUERA G, CRIADO J M. Catalytic decomposition of formic acid on metal oxides[J]. Catal Rev-Sci Eng,2006,7(1):51−86.
    [31] POPOVA G Y, CHESALOV Y A, SADOVSKAYA E M, et al. Effect of water on decomposition of formic acid over V-Ti oxide catalyst: Kinetic and in situ FTIR study[J]. J Mol Catal A: Chem,2012,357:148−153. doi: 10.1016/j.molcata.2012.02.005
    [32] SADOVSKAYA E M, CHESALOV Y A, GONCHAROV V B, et al. Formic acid decomposition over V-Ti oxide catalyst: Mechanism and kinetics[J]. Mol Catal,2017,430:54−62. doi: 10.1016/j.molcata.2016.12.010
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  82
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-02
  • 修回日期:  2023-04-09
  • 录用日期:  2023-04-10
  • 网络出版日期:  2023-09-18
  • 刊出日期:  2024-01-09

目录

    /

    返回文章
    返回