留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

α-MnO2 作为先进的双功能ORR/IOR电催化剂构建可充电锌空电池

王振 赵慧 周菊红 盛可发 王涛 江彬彬

王振, 赵慧, 周菊红, 盛可发, 王涛, 江彬彬. α-MnO2 作为先进的双功能ORR/IOR电催化剂构建可充电锌空电池[J]. 燃料化学学报(中英文), 2024, 52(2): 266-276. doi: 10.19906/j.cnki.JFCT.2023066
引用本文: 王振, 赵慧, 周菊红, 盛可发, 王涛, 江彬彬. α-MnO2 作为先进的双功能ORR/IOR电催化剂构建可充电锌空电池[J]. 燃料化学学报(中英文), 2024, 52(2): 266-276. doi: 10.19906/j.cnki.JFCT.2023066
WANG Zhen, ZHAO Hui, ZHOU Juhong, SHENG Kefa, WANG Tao, JIANG Binbin. α-MnO2 as an advanced bifunctional ORR/IOR electrocatalyst for Zn-air battery[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 266-276. doi: 10.19906/j.cnki.JFCT.2023066
Citation: WANG Zhen, ZHAO Hui, ZHOU Juhong, SHENG Kefa, WANG Tao, JIANG Binbin. α-MnO2 as an advanced bifunctional ORR/IOR electrocatalyst for Zn-air battery[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 266-276. doi: 10.19906/j.cnki.JFCT.2023066

α-MnO2 作为先进的双功能ORR/IOR电催化剂构建可充电锌空电池

doi: 10.19906/j.cnki.JFCT.2023066
基金项目: 安徽省自然科学基金(2008085QB53),安徽省教育厅高校科学研究重点项目(KJ2021A0642, KJ2021A0655),光电磁材料安徽省重点实验室开放基金(ZD2022004)资助
详细信息
    通讯作者:

    E-mail: wangtao@aqnu.edu.cn

    bbjiang0726@126.com

  • 中图分类号: O643.36

α-MnO2 as an advanced bifunctional ORR/IOR electrocatalyst for Zn-air battery

Funds: The project was supported by Anhui Province Natural Science Foundation (2008085QB53), Natural Science Research Project of Anhui Province Education Department (KJ2021A0642, KJ2021A0655), Open Project of Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials (ZD2022004).
  • 摘要: 析氧反应(oxygen evolution reaction, OER)和氧还原反应(oxygen reduction reaction, ORR)是可充电锌空电池(rechargeable Zn-air batteries, RZABs)重要的两个反应。其中,析氧反应具有较高的热力学平衡电位和复杂的反应路径,实际应用中需要高的充电电压驱动其发生,这将带来一系列问题并且限制了RZABs的商业化应用。基于此,本研究构造α-MnO2并作为ORR/IOR双功能催化剂。在碱性体系中引入反应改性剂KI,α-MnO2对碘离子氧化反应(iodide oxidation reaction, IOR)具有更低的阳极氧化电位和更快的催化动力学。当1.0 mol/L KOH电解液中添加0.5 mol/L KI时,相比于OER(1.709 V @10 mA/cm2),α-MnO2在IOR过程中电流密度达到10 mA/cm2时阳极电位减小了398 mV(1.311 V vs. RHE),且表现出低至57.5 mV/dec塔菲尔斜率。相对于与Pt/C,在含有KI的KOH电解液中,α-MnO2表现出与Pt/C相媲美的ORR活性。此外,以α-MnO2为空气电极组装成RZAB后,该电池也表现出了优异的充电活性和良好的循环寿命,在5 mA/cm2电流密度下,充放电电压间隙由0.97 V缩减为0.61 V,能量转换效率由54.9%提升至66.2%。
  • FIG. 2933.  FIG. 2933.

    FIG. 2933.  FIG. 2933.

    图  1  α-MnO2的(a)XRD谱图,(b)SEM,(c)TEM和(d)高分辨TEM图片

    Figure  1  (a) XRD pattern, (b) SEM, (c) TEM and (d) high resolution TEM image of α-MnO2

    图  2  α-MnO2的(a)全扫描XPS光谱谱图和(b)Mn 2p的高分辨XPS光谱谱图

    Figure  2  (a) The full XPS scan spectrum of α-MnO2 and (b) high-resolution XPS spectrum of Mn 2p of α-MnO2

    图  3  (a)α-MnO2、RuO2和Pt/C在1.0 mol/L KOH中的OER曲线,(b)α-MnO2在不同浓度KI的电解液中的LSV曲线,(c)α-MnO2、RuO2和Pt/C在1.0 mol/L KOH+0.5 mol/L KI中的LSV曲线和(d)相应的塔菲尔斜率

    Figure  3  (a) The LSV curves of α-MnO2, RuO2 and Pt/C in 1.0 mol/L KOH, (b) the LSV curves of α-MnO2 in KOH containing different concentration of KI, (c) the LSV curves of α-MnO2, RuO2 and Pt/C in 1.0 mol/L KOH containing 0.5 mol/L KI and (d) corresponding Tafel slopes

    图  4  (a)Pt/C在含有不同浓度的KI的1.0 mol/L KOH电解液中的LSV曲线,(b)α-MnO2和Pt/C在含有不同浓度的KI的1.0 mol/L KOH电解液中达到10 mA/cm2电流密度时的电位柱状图和(c)α-MnO2V-t曲线

    Figure  4  (a) LSV curves of Pt/C in KOH with different concentrations of KI, (b) potentials of α-MnO2 and Pt/C at 10 mA/cm2 in KOH with different concentrations of KI and (c) V-t curve of α-MnO2

    图  5  α-MnO2在不同含量KI的0.1 mol/L KOH中(a)CV曲线(实线为O2饱和溶液,虚线为N2饱和溶液)和(b)LSV曲线(1600 r/min),Pt/C催化剂在不同含量KI的0.1 mol/L KOH中(c)CV曲线(实线为O2饱和溶液,虚线为N2饱和溶液)和(d)LSV曲线(1600 r/min)

    Figure  5  (a) CV curves (solid line is O2 saturated solution, dotted line is N2 saturated solution) and (b) LSV curves of α-MnO2 (1600 r/min) in 0.1 mol/L KOH solution containing different concentration of KI, and (c) CV curves (solid line is O2 saturated solution, dotted line is N2 saturated solution) and (d) LSV curves of Pt/C (1600 r/min) in 0.1 mol/L KOH solution containing different concentration of KI

    图  6  α-MnO2在0.1 mol/L KOH+0.05 mol/L KI中(a)不同扫速下的LSV曲线和(b)相应的K-L图;α-MnO2与商业Pt/C在不同电解液中(c)α-MnO2和Pt/C的LSV曲线(实线为KOH+1/2 KI,虚线为纯KOH)和(d)相应的ΔE(ΔE=Ej=10E1/2)对比

    Figure  6  (a) LSV curves of α-MnO2 in 0.1 mol/L KOH with 0.05 mol/L KI under different scan rate and (b) corresponding K-L plots; (c) LSV curves of α-MnO2 and Pt/C (the solid line is KOH+1/2 KI, dasded line is KOH); (d) the ΔEE=Ej=10E1/2) value of α-MnO2 and Pt/C

    图  7  α-MnO2在1.0 mol/L KOH+0.5 mol/L KI溶液中IOR测试后的(a)XRD谱图;(b)TEM;(c)高分辨TEM图片和(d)Mn 2p的高分辨XPS光谱谱图;α-MnO2在0.1 mol/L KOH+0.05 mol/L KI溶液中ORR测试后的(e)XRD谱图;(f)TEM;(g)高分辨TEM图片和(h)Mn 2p的高分辨XPS光谱谱图

    Figure  7  (a) XRD pattern; (b) TEM; (c) high resolution TEM image and (d) high-resolution XPS spectrum of Mn 2p of α-MnO2 after IOR testing in 1.0 mol/L KOH+0.5 mol/L KI solution; (e) XRD pattern; (f) TEM; (g) high resolution TEM image and (h) high-resolution XPS spectrum of Mn 2p of α-MnO2 after ORR testing in 0.1 mol/L KOH+0.05 mol/L KI solution

    图  8  (a)自组装的RZAB在不同电解液中的开路电压;(b)充放电极化曲线以及(c)恒流放电-充电循环曲线

    Figure  8  (a) The open-circuit voltage of fabircated rechargeable Zn-air battery in electrolyte with/without KI; (b) The charge/discharge curves and (c) galvanostatic charge/discharge plots at 10 mA/cm2 in electrolyte with/without KI

    表  1  不同催化剂的IOR比较

    Table  1  Comparison of IOR of different catalysts

    CatalystElectrolyteIOR potentialEOER EIOR
    (@10 mA/cm2)
    Ref.
    20% Pt/C1.0 mol/L KOH+0.5 mol/L KI1.24 V @10 mA/cm2450 mV[5]
    RuTiO-5500.1 mol/L KOH+0.1 mol/L NaI1.29 V @10 mA/cm2[30]
    Ni-Co(OH)2 NSAs1.0 mol/L KOH+0.33 mol/L KI1.32 V @50 mA/cm2,
    1.33 V @100 mA/cm2
    320 mV[31]
    Pt/RuO2/CC0.1 mol/L KOH+0.033 mol/L KI1.42 V @10 mA/cm2310 mV[45]
    α-MnO21.0 mol/L KOH+0.5 mol/L KI1.311 V @10 mA/cm2398 mVthis work
    下载: 导出CSV

    表  2  不同催化剂的ORR和ΔE比较

    Table  2  Comparison of ORR and ΔE of different catalysts

    CatalystE1/2/VEj=10/VΔE (Ej=10E1/2)/VReference
    MnO2-IL0.50.831.6240.794[8]
    24Co-MnO20.7871.660.872[44]
    MnO2/NRGO-Urea0.801.690.89[47]
    MnO2/C0.671.751.08[47]
    CoO:MnO2@C-CC0.781.450.67[48]
    MnO-FeCo0.881.5010.621[49]
    α-MnO2/Co3O40.761.7841.024[50]
    MC@NC-0.30.821.590.77[51]
    CoFe@CNT/MnO0.851.4230.573[52]
    α-MnO20.7461.311 V
    (IOR)
    0.565this
    work
    下载: 导出CSV
  • [1] WANG M, CHAO F, LIU Y, et al. Hollow N-doped carbon spheres with anchored single-atom Fe sites for efficient electrocatalytic oxygen reduction[J]. J Fuel Chem Technol,2023,51(5):581−588. doi: 10.1016/S1872-5813(22)60067-7
    [2] 徐能能, 乔锦丽. 锌-空气电池双功能催化剂研究进展[J]. 电化学,2020,26(4):531−562. doi: 10.13208/j.electrochem.200524

    XU Nengneng, QIAO Jinli. Recent progress in bifunctional catalysts for zinc-air batteries[J]. J Electrochem,2020,26(4):531−562. doi: 10.13208/j.electrochem.200524
    [3] ZHANG K, ZOU R. Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges[J]. Small,2021,17(37):2100129. doi: 10.1002/smll.202100129
    [4] ZHAO C X, LIU J N, WANG J, et al. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts[J]. Chem Soc Rev,2021,50(13):7745−7778. doi: 10.1039/D1CS00135C
    [5] ZHAO S, LIU T, DAI Y, et al. Pt/C as a bifunctional ORR/iodide oxidation reaction (IOR) catalyst for Zn-air batteries with unprecedentedly high energy efficiency of 76.5%[J]. Appl Catal B: Environ,2023,320:121992. doi: 10.1016/j.apcatb.2022.121992
    [6] LEI H, MA L, WAN Q, et al. Promoting surface reconstruction of NiFe layered double hydroxide for enhanced oxygen evolution[J]. Adv Energy Mater,2022,12(48):2202522. doi: 10.1002/aenm.202202522
    [7] XUE H, MENG A, YANG T, et al. Controllable oxygen vacancies and morphology engineering: Ultra-high HER/OER activity under base-acid conditions and outstanding antibacterial properties[J]. J Energy Chem,2022,71:639−651. doi: 10.1016/j.jechem.2022.04.052
    [8] GU Y, YAN G, LIAN Y, et al. MnIII-enriched α-MnO2 nanowires as efficient bifunctional oxygen catalysts for rechargeable Zn-air batteries[J]. Energy Storage Mater,2019,23:252−260. doi: 10.1016/j.ensm.2019.05.006
    [9] WU K, SHI L, WANG Z, et al. A general strategy to generate oxygen vacancies in bimetallic layered double hydroxides for water oxidation[J]. Chem Commun,2023,59(21):3138−3141. doi: 10.1039/D3CC00096F
    [10] CHANG Y, ZHAI P, HOU J, et al. Excellent HER and OER catalyzing performance of Se-vacancies in defects-engineered PtSe2: From simulation to experiment[J]. Adv Energy Mater,2022,12(1):2102359. doi: 10.1002/aenm.202102359
    [11] 宋卓卓, 余宗宝, 武宏大, 等. CoSOH/Co(OH)2复合纳米片的制备及其氧析出催化性能[J]. 燃料化学学报,2021,49(10):1549−1557. doi: 10.1016/S1872-5813(21)60077-4

    SONG Zhuozhuo, YU Zongbao, WU Hongda, et al. Preparation of CoSOH/Co(OH)2 composite nanosheets and its catalytic performance for oxygen evolution[J]. J Fuel Chem Technol,2021,49(10):1549−1557. doi: 10.1016/S1872-5813(21)60077-4
    [12] YANG L, WANG D, LV Y, et al. Nitrogen-doped graphitic carbons with encapsulated CoNi bimetallic nanoparticles as bifunctional electrocatalysts for rechargeable Zn-Air batteries[J]. Carbon,2019,144:8−14. doi: 10.1016/j.carbon.2018.12.008
    [13] JIANG B, CHEONG W C, TU R, et al. Regulating the electronic structure of NiFe layered double hydroxide/reduced graphene oxide by Mn incorporation for high-efficiency oxygen evolution reaction[J]. Sci China Mater,2021,64(11):2729−2738. doi: 10.1007/s40843-021-1678-y
    [14] QIU B, WANG C, ZHANG N, et al. CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation[J]. ACS Catal,2019,9(7):6484−6490. doi: 10.1021/acscatal.9b01819
    [15] DIAZ-MORALES O, LEDEZMA-YANEZ I, KOPER M T M, et al. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction[J]. ACS Catal,2015,5(9):5380−5387. doi: 10.1021/acscatal.5b01638
    [16] YANG X, LI Z, JUN Q I N, et al. Preparation of Ni-Fe alloy foam for oxygen evolution reaction[J]. J Fuel Chem Technol,2021,49(6):827−834. doi: 10.1016/S1872-5813(21)60084-1
    [17] ZHANG X, SHEN W, LI Z, et al. Carbon-based active support for water oxidation electrocatalyst: Making full use of the available surface area[J]. Carbon,2020,167:548−558. doi: 10.1016/j.carbon.2020.06.022
    [18] 赵丹丹, 张楠, 卜令正, 等. 非贵金属电催化析氧催化剂的最新进展[J]. 电化学,2018,24(5):455−465.

    ZHAO Dandan, ZHANG Nan, BU Liangzheng, et al. Recent advances in non-noble metal nanomaterials for oxygen evolution electrocatalysis[J]. J Electrochem,2018,24(5):455−465.
    [19] FANG J, ZHANG X, WANG X, et al. A metal and nitrogen doped carbon composite with both oxygen reduction and evolution active sites for rechargeable zinc-air batteries[J]. J Mater Chem A,2020,8(31):15752−15759. doi: 10.1039/D0TA02544E
    [20] TAN Y, ZHANG Z, LEI Z, et al. Electronic modulation optimizes OH* intermediate adsorption on Co-Nx-C sites via coupling CoNi alloy in hollow carbon nanopolyhedron toward efficient reversible oxygen electrocatalysis[J]. Appl Catal B: Environ,2022,304:121006. doi: 10.1016/j.apcatb.2021.121006
    [21] WANG T, CAO X, JIAO L. Progress in hydrogen production coupled with electrochemical oxidation of small molecules[J]. Angew Chem Int Ed, 2022: e202213328.
    [22] ZHANG M, ZHU J, WAN R, et al. Synergistic effect of nickel oxyhydroxide and tungsten carbide in electrocatalytic alcohol oxidation[J]. Chem Mater,2022,34(3):959−969. doi: 10.1021/acs.chemmater.1c02535
    [23] LI Y, WEI X, HAN S, et al. MnO2 electrocatalysts coordinating alcohol oxidation for ultra‐durable hydrogen and chemical productions in acidic solutions[J]. Angew Chem Int Ed,2021,133(39):21634−21642. doi: 10.1002/ange.202107510
    [24] CHEN S, DUAN J, VASILEFF A, et al. Size fractionation of two-dimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion[J]. Angew Chem Int Ed,2016,55(11):3804−3808. doi: 10.1002/anie.201600387
    [25] ZHU Y, LIU C, CUI S, et al. Multistep dissolution of lamellar crystals generates superthin amorphous Ni(OH) 2 catalyst for UOR[J]. Adv Mater, 2023: 2301549.
    [26] 陈晨欣, 何苏祺, KAMRAN D, 等. 海胆状NiMoO4纳米棒阵列作为高效双功能催化剂用于电催化及光伏驱动尿素电解[J]. 催化学报,2022,43(5):1267−1276. doi: 10.1016/S1872-2067(21)63962-1

    CHEN Chenxin, HE Suqi, KAMRAN D, et al. Sea urchin like NiMoO4 nanorod arrays as efficient bifunctional catalysts for electrocatalysis and photovoltaic driven urea electrolysis[J]. Chin J Catal,2022,43(5):1267−1276. doi: 10.1016/S1872-2067(21)63962-1
    [27] LIN C, ZHANG P, WANG S, et al. Engineered porous Co-Ni alloy on carbon cloth as an efficient bifunctional electrocatalyst for glucose electrolysis in alkaline environment[J]. J Alloy Compd,2020,823:153784. doi: 10.1016/j.jallcom.2020.153784
    [28] WANG Y, YAN W, NI M, et al. Surface valence regulation of cobalt-nickel foams for glucose oxidation-assisted water electrolysis[J]. Chem Commun,2023,59(17):2485−2488. doi: 10.1039/D2CC05270A
    [29] PENG S M, PATIL S B, CHANG C C, et al. Fast charge transfer between iodide ions and a delocalized electron system on the graphite surface for boosting hydrogen production[J]. J Mater Chem A,2022,10(45):23982−23989. doi: 10.1039/D2TA06517G
    [30] ADAM D B, TSAI M C, AWOKE Y A, et al. Engineering self-supported ruthenium-titanium alloy oxide on 3D web-like titania as iodide oxidation reaction electrocatalyst to boost hydrogen production[J]. Appl Catal B: Environ,2022,316:121608. doi: 10.1016/j.apcatb.2022.121608
    [31] HU E, YAO Y, CHEN Y, et al. Boosting hydrogen generation by anodic oxidation of iodide over Ni-Co(OH)2 nanosheet arrays[J]. Nanoscale Adv,2021,3(2):604−610. doi: 10.1039/D0NA00847H
    [32] ADAM D B, TSAI M C, AWOKE Y A, et al. Iodide oxidation reaction catalyzed by ruthenium-tin surface alloy oxide for efficient production of hydrogen and iodine simultaneously[J]. ACS Sustainable Chem Eng,2021,9(26):8803−8812. doi: 10.1021/acssuschemeng.1c01867
    [33] DESSIE T A, HUANG W H, ADAM D B, et al. Efficient H2 evolution coupled with anodic oxidation of iodide over defective carbon-supported single-atom Mo-N4 electrocatalyst[J]. Nano Lett,2022,22(18):7311−7317. doi: 10.1021/acs.nanolett.2c01229
    [34] TANG Y J, ZHENG S S, CAO S, et al. Advances in the application of manganese dioxide and its composites as electrocatalysts for the oxygen evolution reaction[J]. J Mater Chem A,2020,8:18492−18514. doi: 10.1039/D0TA05985D
    [35] 胡文静, 班锦锦, 谢顺利, 等. 氧化锰基电催化材料的设计合成及其铝空气电池应用[J]. 硅酸盐通报,2023,42(2):728−735 + 742. doi: 10.16552/j.cnki.issn1001-1625.2023.02.011

    HU Wen-jing, BAN Jin-jin, XIE Shun-li, et al. Design and synthesis of manganese oxide based electrocatalytic materials and application of aluminium-air battery[J]. J Chin Ceram Soc,2023,42(2):728−735 + 742. doi: 10.16552/j.cnki.issn1001-1625.2023.02.011
    [36] 赵慧, 姜日娟, 张勇, 等. 用于锌-空气电池的MnO2纳米片@Ni-氮掺杂石墨烯气凝胶[J]. 科学通报,2021,66(14):1758−1766. doi: 10.1360/TB-2020-1469

    ZHAO Hui, JIANG Rijuan, ZHANG Yong, et al. MnO2 nanosheets@Ni nitrogen doped graphene aerogel for zinc air batteries[J]. Chin Sci Bull,2021,66(14):1758−1766. doi: 10.1360/TB-2020-1469
    [37] CAO Y L, YANG H X, AI X P, et al. The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution[J]. J Electroanal Chem,2003,557:127−134. doi: 10.1016/S0022-0728(03)00355-3
    [38] MENG Y, SONG W, HUANG H, et al. Structure-property relationship of bifunctional MnO2 nanostructures: Highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media[J]. J Am Chem Soc,2014,136(32):11452−11464. doi: 10.1021/ja505186m
    [39] LI P C, HU C C, LEE T C, et al. Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries[J]. J Power Sources,2014,269:88−97. doi: 10.1016/j.jpowsour.2014.06.108
    [40] LI P C, HU C C, NODA H, et al. Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries: effects of the crystalline structure of manganese oxides[J]. J Power Sources,2015,298:102−113. doi: 10.1016/j.jpowsour.2015.08.051
    [41] SHAO C, YIN K, LIAO F, et al. Rod-shaped α-MnO2 electrocatalysts with high Mn3+ content for oxygen reduction reaction and Zn-air battery[J]. J Alloy Compd,2021,860:158427. doi: 10.1016/j.jallcom.2020.158427
    [42] 黄乐珩, 程高, 赵英霞, 等. 不同晶型MnO2纳米阵列的可控合成及其电催化析氧性能[J]. 无机化学学报,2022,38(2):333−343.

    HUANG Leheng, CHENG Gao, ZHAO Yingxia, et al. Controllable synthesis of different crystalline MnO2 nanoarrays and their electrocatalytic oxygen evolution performance[J]. J Inorg Chem,2022,38(2):333−343.
    [43] YIN M, MIAO H, HU R, et al. Manganese dioxides for oxygen electrocatalysis in energy conversion and storage systems over full pH range[J]. J Power Sources,2021,494:229779. doi: 10.1016/j.jpowsour.2021.229779
    [44] CHEN B, MIAO H, HU R, et al. Efficiently optimizing the oxygen catalytic properties of the birnessite type manganese dioxide for zinc-air batteries[J]. J Alloy Compd,2021,852:157012. doi: 10.1016/j.jallcom.2020.157012
    [45] ZHANG Y, QIN H, ALFRED M, et al. Reaction modifier system enable double-network hydrogel electrolyte for flexible zinc-air batteries with tolerance to extreme cold conditions[J]. Energy Storage Mater,2021,42:88−96. doi: 10.1016/j.ensm.2021.07.026
    [46] 任志立, 段磊, 徐守冬, 等. Pt/Co-N-C电催化材料的制备及其碱性ORR性能[J]. 人工晶体学报,2023,52(4):654−662.

    REN Zhi-li, DUAN Lei, XU Shou-dong, et al. Preparation of Pt/Co-N-C electrocatalytic materials and their alkaline ORR properties[J]. J Synth Cryst,2023,52(4):654−662.
    [47] MIAO H, CHEN B, LI S, et al. All-solid-state flexible zinc-air battery with polyacrylamide alkaline gel electrolyte[J]. J Power Sources,2020,450:227653. doi: 10.1016/j.jpowsour.2019.227653
    [48] ZAMANI-MEYMIAN M R, KHANMOHAMMADI C K, POURZOLFAGHAR H. Designing high-quality electrocatalysts based on CoO: MnO2@C supported on carbon cloth fibers as bifunctional air cathodes for application in rechargeable Zn-Air battery[J]. ACS Appl Mater Interfaces,2022,14(50):55594−55607. doi: 10.1021/acsami.2c16826
    [49] YE Y, ZHANG L, ZHU Q, et al. Interface engineering induced charge rearrangement boosting reversible oxygen electrocatalysis activity of heterogeneous FeCo-MnO@N-doped carbon nanobox[J]. J Colloid Interf Sci,2023,650:1350−1360. doi: 10.1016/j.jcis.2023.07.101
    [50] HU T, ZHANG W, XIA Z, et al. Growth restriction of Co3O4 nanoparticles by α-MnO2 nanorods as air cathode catalyst for rechargeable aluminum-air battery[J]. Int J Energy Res,2022,46(8):11174−11184. doi: 10.1002/er.7917
    [51] PENG L, PENG X, ZHU Z, et al. Efficient MnO and Co nanoparticles coated with N-doped carbon as a bifunctional electrocatalyst for rechargeable Zn-air batteries[J]. Int J Hydrogen Energy,2023,48(50):19126−19136. doi: 10.1016/j.ijhydene.2023.01.263
    [52] CHEN S, HUANG Y, LI M, et al. MnOx anchored on N and O co-doped carbon nanotubes encapsulated with FeCo alloy as highly efficient bifunctional electrocatalyst for rechargeable Zinc-Air batteries[J]. J Electroanal Chem,2021,895:115513. doi: 10.1016/j.jelechem.2021.115513
    [53] LU J, WANG H, SUN Y, et al. Charge state manipulation induced through cation intercalation into MnO2 sheet arrays for efficient water splitting[J]. Chem Eng J,2021,417:127894. doi: 10.1016/j.cej.2020.127894
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  16
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-13
  • 修回日期:  2023-08-13
  • 录用日期:  2023-08-14
  • 网络出版日期:  2023-09-18
  • 刊出日期:  2024-02-02

目录

    /

    返回文章
    返回