留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过硫酸铵氧化耦合过渡金属氧化物改性炭基催化剂低温SCR性能增强机制研究

肖岭 黄妍 乔淑芳 赵令葵 李思密

肖岭, 黄妍, 乔淑芳, 赵令葵, 李思密. 过硫酸铵氧化耦合过渡金属氧化物改性炭基催化剂低温SCR性能增强机制研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024006
引用本文: 肖岭, 黄妍, 乔淑芳, 赵令葵, 李思密. 过硫酸铵氧化耦合过渡金属氧化物改性炭基催化剂低温SCR性能增强机制研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024006
XIAO Ling, HUANG Yan, QIAO Shufang, ZHAO Lingkui, LI Simi. Study on the enhancement mechanism of low-temperature SCR performance of ammonium persulfate coupled transition metal oxides modified carbon-based catalysts[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024006
Citation: XIAO Ling, HUANG Yan, QIAO Shufang, ZHAO Lingkui, LI Simi. Study on the enhancement mechanism of low-temperature SCR performance of ammonium persulfate coupled transition metal oxides modified carbon-based catalysts[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024006

过硫酸铵氧化耦合过渡金属氧化物改性炭基催化剂低温SCR性能增强机制研究

doi: 10.19906/j.cnki.JFCT.2024006
基金项目: 湖南省教育厅科研项目(22A0129)和湖南省研究生科研创新项目(CX20230668)资助
详细信息
    通讯作者:

    E-mail: xtuhy@163.com

  • 中图分类号: X701

Study on the enhancement mechanism of low-temperature SCR performance of ammonium persulfate coupled transition metal oxides modified carbon-based catalysts

Funds: The project was supported by Scientific Research Fund of Hunan Provincial Education Department (22A0129) and Postgraduate Scientific Research Innovation Project of Hunan Province (CX20230668).
  • 摘要: 本工作中利用过硫酸铵氧化耦合过渡金属氧化物改性制备V/OAC、Fe/OAC、Mn/OAC、Cu/OAC炭基催化剂,并通过催化活性测试和物理吸附、FT-IR、XPS、NH3-TPD、H2-TPR、EPR等表征手段探究改性炭基催化剂的低温SCR性能增强机制。结果表明,过硫酸铵氧化可向活性炭载体表面引入大量酸性含氧官能团,促进过渡金属氧化物中的氧空位形成,从而提升炭基催化剂的表面酸度和氧化还原性能,进而提升了炭基催化剂低温NH3-SCR性能。本工作发现,过硫酸铵氧化可诱导过渡金属元素(V、Fe、Mn、Cu)的低价态形成。因此,过硫酸铵氧化改性后,活性组分中低价态金属利于NH3-SCR反应的V/OAC、Fe/OAC催化剂性能提升显著,VOx/OAC和FeOx/OAC催化剂在100 ℃下的NO转化率分别从18.2%提升到34.8%和从34.2%提升到55.6%;而活性组分中高价态金属有利NH3-SCR反应的Mn/OAC和Cu/OAC催化剂性能提升有限,100 ℃下的NO转化率仅从61.4%提升到70.4%和61.3%提升到69.7%。本工作总结了过硫酸铵氧化改性对炭基催化剂表面金属价态的调控作用,有助于深入认识过硫酸铵氧化改性对炭基催化剂物化性质的调控规律,为高效炭基脱硝催化剂的开发提供指导和参考。
  • 图  1  MOx/AC和MOx/OAC(M=V、Fe、Mn、Cu)NH3-SCR脱硝性能

    Figure  1  MOx/AC and MOx/OAC (M=V, Fe, Mn, Cu) NH3-SCR denitration performance test Reaction Conditions: 0.05%NO, 0.05%NH3, 5%O2, 5%H2O ,N2 as balance, flow rate=360 mL/min, GHSV=24000 h−1.

    图  2  M/AC和M/OAC(M=V、Fe、Mn、Cu)NH3-SCR的抗硫抗水性能

    Figure  2  Test of sulfur and water resistance of M/AC and M/OAC (M=V, Fe, Mn, Cu) NH3-SCR Reaction Conditions: 0.05%NO, 0.05%NH3, 5%O2, 5%H2O, 0.02%SO2, N2 as balance, flow rate=360 mL/min, GHSV=24000 h−1.

    图  3  AC和OAC的(a) FT-IR光谱图 (b) XPS总谱图 (c) XPS的C 1s谱图

    Figure  3  (a) FT-IR spectra (b) XPS total spectra (c) C 1s spectra of XPS of AC and OAC

    图  4  催化剂的XPS谱图(a)V 2p (b)Fe 2p (c)Mn 2p (d)Cu 2p

    Figure  4  (a)V 2p(b)Fe 2p(c)Mn 2p(d)Cu 2p spectrum of catalyst XPS

    图  5  催化剂的XPS O 1s谱图

    Figure  5  O 1s spectrum of catalyst XPS

    图  6  催化剂的EPR谱图

    Figure  6  EPR spectrum of catalyst

    图  7  催化剂的NH3-TPD谱图(a)和H2-TPR谱图(b)

    Figure  7  NH3-TPD spectra (a) and H2-TPR spectra (b) of catalysts

    表  1  催化剂的比表面积以及孔容和孔径

    Table  1  Catalyst specific surface area and pore volume aperture

    Sample BET surface area/(m2·g−1) Cumulitive pore volume/(cm3·g−1) Pore size/
    nm
    VOx/AC 824 0.45 2.18
    VOx/OAC 760 0.42 2.22
    FeOx/AC 689 0.30 3.83
    FeOx/OAC 602 0.29 3.81
    MnOx/AC 803 0.44 2.53
    MnOx/OAC 635 0.34 2.49
    CuOx/AC 811 0.44 2.62
    CuOx/OAC 657 0.36 2.52
    下载: 导出CSV

    表  2  催化剂的总酸量

    Table  2  Total acid content of catalyst

    Sample V/AC V/OAC Fe/AC Fe/OAC Mn/AC Mn/OAC Cu/AC Cu/OAC
    Total acid
    (μmol·g−1)
    379.2 577.6 523.7 746.3 1190.7 1478.8 1325.3 1721.4
    下载: 导出CSV
  • [1] GUO Q Q, JING W, HOU Y Q, et al. On the nature of oxygen groups for NH3-SCR of NO over carbon at low temperatures[J]. Chem Eng J,2015,270:41−49. doi: 10.1016/j.cej.2015.01.086
    [2] TANG X L, HAO J M, YI H H, et al. Low-temperature SCR of NO with NH3 on Mn-based catalysts modified with cerium[J]. J Rare Earths,2007,25(1):240.
    [3] 谭月. Mn-Ce/活性焦低温脱硫脱硝催化剂的制备与再生实验研究[D]. 南京: 南京师范大学, 2015

    Tan Y. Experimental study on preparation and regeneration of Mn-Ce/ Active Coke catalyst for desulfurization and denitrification at low temperature [D]. Nanjing: Nanjing Normal University, 2015.)
    [4] KANG M, PARK E D, KIM J M, et al. Cu-Mn mixed oxides for low temperature NO reduction with NH3[J]. Catal Today,2006,111(3-4):236−241. doi: 10.1016/j.cattod.2005.10.032
    [5] QI G, YANG R T, CHANG R, et al. Low-temperature SCR of NO with NH3 over USY-supported manganese oxide-based catalysts[J]. Catal lett,2003,87(1):67−71.
    [6] ZHU Z, LIU Z, LIU S, et al. A novel carbon-supported vanadium oxide catalyst for NO reduction with NH3 at low temperatures[J]. Appl Catal B:Environ,1999,23:L229−L233. doi: 10.1016/S0926-3373(99)00085-5
    [7] LIU L, WANG B, YAO X, et al. Highly efficient MnO x /biochar catalysts obtained by air oxidation for low-temperature NH3-SCR of NO[J]. Fuel,2021,283:119336. doi: 10.1016/j.fuel.2020.119336
    [8] LI S, HUANG Y, ZHU H, et al. Dual improvement in acid and redox properties of the FeO x /OAC catalyst via APS oxygen-functionalization: High low-temperature NH3-SCR activity, SO2 and H2O tolerance[J]. Fuel,2023,341:127716. doi: 10.1016/j.fuel.2023.127716
    [9] GUI R, YAN Q, XUE T, et al. The promoting/inhibiting effect of water vapor on the selective catalytic reduction of NO x [J]. J Hazard Mater,2022,439:129665. doi: 10.1016/j.jhazmat.2022.129665
    [10] GUO K, JI J, SONG W, et al. Conquering ammonium bisulfate poison over low-temperature NH3-SCR catalysts: A critical review[J]. Appl Catal B:Environ,2021,297:120388. doi: 10.1016/j.apcatb.2021.120388
    [11] GUO K, JI J, OSUGA R, et al. Construction of Fe2O3 loaded and mesopore confined thin-layer titania catalyst for efficient NH3-SCR of NOx with enhanced H2O/SO2 tolerance[J]. Appl Catal B:Environ,2021,287:119982. doi: 10.1016/j.apcatb.2021.119982
    [12] LIU C, CHEN L, LI J, et al. Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3[J]. Environ Sci Technol,2012,46(11):6182−6189. doi: 10.1021/es3001773
    [13] WU Z, WEBLEY PA, ZHAO D, et al. Comprehensive study of pore evolution, mesostructural stability, and simultaneous surface functionalization of ordered mesoporous carbon (FDU-15) by wet oxidation as a promising adsorbent[J]. Langmuir,2010,26(12):10277−86. doi: 10.1021/la100455w
    [14] DU X, LI C, ZHAO L, et al. Promotional removal of HCHO from simulated flue gas over Mn-Fe oxides modified activated coke[J]. Appl Catal B:Envirol,2018,232:37−48. doi: 10.1016/j.apcatb.2018.03.034
    [15] CHEN L, YAO X, CAO J, et al. Effect of Ti4+ and Sn4+ co-incorporation on the catalytic performance of CeO2-MnO x catalyst for low temperature NH3-SCR[J]. Appl Surf Sci,2019,476:283−292. doi: 10.1016/j.apsusc.2019.01.095
    [16] MACÍAS-GARCÍA A, DIAZ-DIEZ M A, CUERDA-CORREA E M, et al. Study of the pore size distribution and fractal dimension of HNO3-treated activated carbons[J]. Appl Surf Sci,2006,252(17):5972−5975. doi: 10.1016/j.apsusc.2005.11.010
    [17] ZHANG X, YAO H, LEI X, et al. Synergistic adsorption and degradation of sulfamethoxazole from synthetic urine by hickory-sawdust-derived biochar: the critical role of the aromatic structure[J]. J Hazard Mater,2021,418:126366. doi: 10.1016/j.jhazmat.2021.126366
    [18] PUZIY AM, PODDUBNAYA OI, SOCHA RP, et al. studies of phosphoric acid activated carbons[J]. Carbon,2008,46(15):2113−23. doi: 10.1016/j.carbon.2008.09.010
    [19] SHEN B, LIU Z, XU H, et al. Enhancing the absorption of elemental mercury using hydrogen peroxide modified bamboo carbons. [J] Fuel, 2019, 235 : 878-85.
    [20] XU Z, LI Y, GUO J, et al. An efficient and sulfur resistant K-modified activated carbon for SCR denitrification compared with acid- and Cu-modified activated carbon[J]. Chem Eng J,2020,395:125047. doi: 10.1016/j.cej.2020.125047
    [21] LI N, Ma X, Zha Q, et al. Maximizing the number of oxygen-containing functional groups on activated carbon by using ammonium persulfate and improving the temperature-programmed desorption characterization of carbon surface chemistry[J]. Carbon,2011,49(15):5002−5013. doi: 10.1016/j.carbon.2011.07.015
    [22] ZHANG N, WANG J, LI Q, et al. Enhanced selective catalytic reduction of NOx with NH3 over homoatomic dinuclear sites in defective α-Fe2O3[J]. Chem Eng J,2021,426:131845. doi: 10.1016/j.cej.2021.131845
    [23] ZHAO X, YAN Y, MAO L, et al. A relationship between the V4+/V5+ ratio and the surface dispersion, surface acidity, and redox performance of V2O5-WO3/TiO2 SCR catalysts[J]. RSC advances,2018,8(54):31081−31093. doi: 10.1039/C8RA02857E
    [24] LIU L, WU X, MA Y, et al. Potassium deactivation of Cu-SSZ-13 catalyst for NH3-SCR: Evolution of salts, zeolite and copper species[J]. Chem Eng J,2020,383:123080. doi: 10.1016/j.cej.2019.123080
    [25] BENDRICH M, SCHEUER A, HAYES R E, et al. Unified mechanistic model for Standard SCR, Fast SCR, and NO2 SCR over a copper chabazite catalyst[J]. Appl Catal B:Environ,2018,222:76−87. doi: 10.1016/j.apcatb.2017.09.069
    [26] LI S, HUANG Y, ZHAO L, et al. Oxygen-functionalized activated carbon supported vanadia catalysts: Unexpected improvement in low-temperature NH3-SCR performance[J]. Surf Interfaces,2022,33:102252. doi: 10.1016/j.surfin.2022.102252
    [27] LI Q, LIANG M, HAN X, et al. Insight into the enhancing activity and stability of Ce modified V2O5/AC during cyclic desulfurization-regeneration-denitrification[J]. J Hazard Mater,2022,424:127397. doi: 10.1016/j.jhazmat.2021.127397
    [28] BONINGARI T, ETTIREDDY P R, SOMOGYVARI A, et al. Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions[J]. J Catal,2015,325:145−155. doi: 10.1016/j.jcat.2015.03.002
    [29] YANG J, REN S, ZHANG T, et al. Iron doped effects on active sites formation over activated carbon supported Mn-Ce oxide catalysts for low-temperature SCR of NO[J]. Chem Eng J,2020,379:122398. doi: 10.1016/j.cej.2019.122398
    [30] ZANG P, LIU J, HE Y, et al. LDH-derived preparation of CuMgFe layered double oxides for NH3-SCR and CO oxidation reactions: Performance study and synergistic mechanism[J]. Chem Eng J,2022,446:137414. doi: 10.1016/j.cej.2022.137414
    [31] LI J X, LIU F, REN L, et al. Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NO x with NH3[J]. Environ Sci Technol,2014,48(1):566−572. doi: 10.1021/es4032002
    [32] LIU F, HE H, DING Y, et al. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Appl Catal B:Environ,2009,93(1-2):194−204. doi: 10.1016/j.apcatb.2009.09.029
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-29
  • 修回日期:  2024-02-28
  • 录用日期:  2024-02-29
  • 网络出版日期:  2024-04-01

目录

    /

    返回文章
    返回