留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质基糠醛化学催化制备含氮化合物的研究进展

陈佳月 李克明 黄耀兵 陆强

陈佳月, 李克明, 黄耀兵, 陆强. 生物质基糠醛化学催化制备含氮化合物的研究进展[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024007
引用本文: 陈佳月, 李克明, 黄耀兵, 陆强. 生物质基糠醛化学催化制备含氮化合物的研究进展[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024007
CHEN Jiayue, LI Keming, HUANG Yaobing, LU Qiang. Research progress of chemical catalysis for biomass-based furfural to nitrogen-containing compounds[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024007
Citation: CHEN Jiayue, LI Keming, HUANG Yaobing, LU Qiang. Research progress of chemical catalysis for biomass-based furfural to nitrogen-containing compounds[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024007

生物质基糠醛化学催化制备含氮化合物的研究进展

doi: 10.19906/j.cnki.JFCT.2024007
基金项目: 国家自然科学基金 (52276189, 51821004)资助
详细信息
    通讯作者:

    E-mail: hyb123@mail.ustc.edu.cn

    qianglu@mail.ustc.edu.cn

  • 中图分类号: TK6

Research progress of chemical catalysis for biomass-based furfural to nitrogen-containing compounds

Funds: The project was supported by National Natural Science Foundation of China (52276189, 51821004).
  • 摘要: 糠醛作为最有潜力的生物质基平台化合物之一,可通过化学催化转化为一系列高附加值的化学品和燃料。其中,含氮化合物具有广泛的生物活性,常用于合成药物分子和生物塑料等功能性材料。糠醛通过还原胺化、氨氧化、氧化偶联等过程,可以合成不同类型的含氮化合物,具有巨大的研究前景和应用潜力。本论文综述了近年来以糠醛为原料合成各种高值含氮化合物的研究进展,包括胺类化合物(伯胺、仲胺和叔胺)、腈类化合物、酰胺类化合物和杂环类化合物(苯并杂环类、噻唑类、吡咯、吲哚、哌啶和吡啶等)。重点关注合成方法、催化剂类型、反应路径和反应机理,同时分析了催化剂和氮源对产物分布的影响。该综述为今后生物质基糠醛转化为含氮化合物的研究提供了一些基础信息,为发展更多高效的糠醛催化转化体系提供依据和系统性知识。
  • 图  1  以糠醛为原料合成含氮化合物

    Figure  1  The synthesis of nitrogen-containing compounds from furfural

    图  2  以NH3为氮源,糠醛制备糠胺的合成路径

    Figure  2  The synthetic pathway of furfural to furfural amine utilizing NH3 as the nitrogen source

    图  3  以N2H4·H2O为氮源,糠醛制备糠胺的合成路径

    Figure  3  The synthetic pathway of furfural to furfural amine utilizing N2H4·H2O as the nitrogen source

    图  4  糠醛先与甲基异丁酮缩醛,再还原胺化转化为呋喃胺类化合物

    Figure  4  Furfural is first combined with methyl isobutyl ketone by aldol condensation, followed by amination reduction to produce furan amine compounds

    图  5  以NH3为氮源,糠醛制备2-氰基呋喃的合成路径

    Figure  5  The synthetic pathway of furfural to furan-2-carbonitrile utilizing NH3 as the nitrogen source

    图  6  以羟胺为氮源,糠醛制备糠酰胺的合成路径

    Figure  6  The synthetic pathway of furfural to 2-furamide utilizing hydroxylamine as the nitrogen source

    图  7  糠醛合成2-(呋喃-2-基)苯并[D]咪唑的反应路径

    Figure  7  The synthetic pathway of 2-(furan-2-yl)-1H-benzo[d]imidazole from furfural

    图  8  糠醛合成2-糠基噻唑-4-羧酸甲酯的路径

    Figure  8  The synthetic pathway of furfural to 2-furylthiazole-4-carboxylic acid methyl ester

    图  9  糠醛合成吡咯和吲哚的路径

    Figure  9  The synthetic pathway of furfural to pyrrole and indole

    图  10  糠醛合成哌啶、吡啶和3-羟基吡啶的路径

    Figure  10  The synthetic pathway of furfural to piperidine, pyridine and 3-hydroxypyridine.

  • [1] 李缔, 李攀, 王贤华, 等. 基于Fe负载的HZSM-5催化热解制备生物油实验研究[J]. 燃料化学学报,2016,44(5):540−547.

    LI Di, LI Pan, WANG Xianhua, et al. Experimental study on bio-oil from catalytic pyrolysis on Fe modified HZSM-5[J]. J Fuel Chem Technol,2016,44(5):540−547.
    [2] 魏珺楠, 唐兴, 孙勇, 等. 新型生物质基平台分子γ-戊内酯的应用[J]. 化学进展,2016,28(11):1672−1681.

    WEI Junnan, TANG Xing, SUN Yong, et al. Applications of novel biomass-derived platform molecule γ-valerolactone[J]. Chem Ind Eng Prog,2016,28(11):1672−1681.
    [3] 海雪清, 谭静静, 何静, 等. CuCo双金属催化剂催化糠醛加氢制备1, 5-戊二醇的研究[J]. 燃料化学学报,2023,51(7):959−969. doi: 10.1016/S1872-5813(23)60334-2

    HAI Xueqing, TAN Jinging, HE Jing, et al. Hydrogenation of furfural to 1, 5-pentanediol over CuCo bimetallic catalysts[J]. J Fuel Chem Technol,2023,51(7):959−969. doi: 10.1016/S1872-5813(23)60334-2
    [4] 李微, 贡红辉, 史显磊. 催化转移氢化制生物质基2, 5-呋喃二甲醇研究进展[J]. 燃料化学学报,2023,52(x):1−21.

    LI Wei, GONG Honghui, SHI Xianlei. Recent advances in preparing biomass-based 2, 5-bis(hydroxymethyl)furan by catalytic transfer hydrogenation[J]. J Fuel Chem Technol,2023,52(x):1−21.
    [5] 林鹿, 何北海, 孙润仓, 等. 木质生物质转化高附加值化学品[J]. 化学进展,2007,19(7/8):1206−1216.

    LIN Lu, HE Beihai, SUN Runcang, et al. High-value chemicals from lignocellulosic biomass[J]. Chem Ind Eng Prog,2007,19(7/8):1206−1216.
    [6] 韩冬, 孙来芝, 陈雷, 等. 生物质与塑料共催化热解制备芳烃化合物研究进展[J]. 燃料化学学报,2023,52(x):1−15.

    HAN Dong, SUN Laizhi1, CHEN Lei, et al. Review on the progress in the production of aromatic hydrocarbons by Co-catalytic pyrolysis of biomass and plastics[J]. J Fuel Chem Technol,2023,52(x):1−15.
    [7] 张军, 李丹妮, 袁浩然, 等. 生物质基糠醛和5-羟甲基糠醛加氢转化研究进展[J]. 燃料化学学报,2021,49(12):1752−1767. doi: 10.1016/S1872-5813(21)60135-4

    ZHANG Jun, LI Danni, YUAN Haoran, et al. Advances on the catalytic hydrogenation of biomass-derived furfural and 5- hydroxymethylfurfural[J]. J Fuel Chem Technol,2021,49(12):1752−1767. doi: 10.1016/S1872-5813(21)60135-4
    [8] LI K M, ZHANG Q, XU Z M, et al. Tunable mono- and di-methylation of amines with methanol over bimetallic CuCo nanoparticle catalysts. Green Chem, 2022, 24(15): 5965-5977.
    [9] CHEN J Y, HUANG Y B, HU B, et al. A bio-based click reaction leading to the dihydropyridazinone platform for nitrogen-containing scaffolds. Green Chem, 2023, 25(7): 2672-2680.
    [10] LI H, GUO H X, Fang Z, et al. Cycloamination strategies for renewable N-heterocycles[J]. Green Chem,2020,22(3):582−611. doi: 10.1039/C9GC03655E
    [11] HULSEY M J, YANG H Y, YAN N. Sustainable routes for the synthesis of renewable heteroatom-containing chemicals[J]. ACS Sustain Chem Eng,2018,6(5):5694−5707. doi: 10.1021/acssuschemeng.8b00612
    [12] 代金杭, 蔡雅洁. 由甲壳素生物质合成含氮化学品研究进展[J]. 化学研究与应用,2020,32(7):1111−1116. doi: 10.3969/j.issn.1004-1656.2020.07.002

    DAI Jinhang, CAI Yajie. Research progressof nitrogen-containing chemicals production employing chitin biomass as substrate[J]. Chemical research and application,2020,32(7):1111−1116. doi: 10.3969/j.issn.1004-1656.2020.07.002
    [13] 苏文韬, 李昌志. 木质素制备含氮杂环芳香化合物研究进展[J]. 湖南师范大学自然科学学报,2023,46(4):1−13.

    SU Wentao, LI Changzhi. Progress on the production of nitrogen-containing heterocyclic aromatic compounds from lignin[J]. Journal of Natural Science of Hunan Normal University,2023,46(4):1−13.
    [14] ZHANG X, XU S Q, LI Q F, et al. Recent advances in the conversion of furfural into bio-chemicals through chemo- and bio-catalysis[J]. RSC Adv,2021,11(43):27042−27058. doi: 10.1039/D1RA04633K
    [15] 谭静静, 苏以豪, 高宽, 等. 糠醛及其衍生物选择性加氢制备戊二醇的研究进展[J]. 燃料化学学报,2021,49(6):780−790. doi: 10.1016/S1872-5813(21)60036-1

    TAN Jingjing, SU Yihao, GAO Kuan, et al. Recent advances in the selective hydrogenation of furfural and its derivatives to pentanediol[J]. J Fuel Chem Technol,2021,49(6):780−790. doi: 10.1016/S1872-5813(21)60036-1
    [16] QI H F, YANG J, LIU F, et al. Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones[J]. Nat Commun,2021,12(1):3295. doi: 10.1038/s41467-021-23429-w
    [17] GAO Z X, CAI L Y, MA H R, et al. Dual scale hydrogen transfer bridge construction for biomass tandem reductive amination[J]. ACS Catal,2023,13(19):12835−12847. doi: 10.1021/acscatal.3c03486
    [18] CHATTERJEE M, ISHIZAKA T, KAWANAMI H. Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen: an environmentally friendly approach[J]. Green Chem,2016,18(2):487−496. doi: 10.1039/C5GC01352F
    [19] SONG W J, WAN Y J, LI Y F, et al. Electronic Ni–N interaction enhanced reductive amination on an N-doped porous carbon supported Ni catalyst[J]. Catal Sci Technol,2022,12(23):7208−7218. doi: 10.1039/D2CY01551J
    [20] ZOU H T, CHEN J Z. Efficient and selective approach to biomass-based amine by reductive amination of furfural using Ru catalyst[J]. Appl Catal B:Environ,2022,309:121262. doi: 10.1016/j.apcatb.2022.121262
    [21] JIANG S, RAMDANI W, MULLER E, et al. Direct catalytic conversion of furfural to furan-derived amines in the presence of Ru-based catalyst[J]. ChemSusChem,2020,13(7):1699−1704. doi: 10.1002/cssc.202000003
    [22] JIANG S, MA C R, MULLER E, et al. Selective synthesis of THF-derived amines from biomass-derived carbonyl compounds[J]. ACS Catal,2019,9(10):8893−8902. doi: 10.1021/acscatal.9b03413
    [23] LIN C C, ZHOU J M, ZHENG Z F, et al. An efficient approach to biomass-based tertiary amines by direct and consecutive reductive amination of furfural[J]. J Catal,2022,410:164−179. doi: 10.1016/j.jcat.2022.04.016
    [24] DAS A K, NANDY S, BHAR S. Cu(OAc)2 catalysed aerobic oxidation of aldehydes to nitriles under ligand-free conditions[J]. RSC Adv,2022,12(8):4605−4614. doi: 10.1039/D1RA07701E
    [25] CHEN H, SUN S J, XI H Y, et al. Catalytic oxidative conversion of aldehydes into nitriles using NH3·H2O/FeCl2/NaI/Na2S2O8: A practical approach to febuxostat[J]. Tetrahedron Lett,2019,60(21):1434−1436. doi: 10.1016/j.tetlet.2019.04.043
    [26] HUA M L, SONG J L, HUANG X, et al. Highly efficient oxidative cyanation of aldehydes to nitriles over Se, S, N- tri-doped hierarchically porous carbon nanosheets[J]. Angew Chem Int Ed Engl,2021,60(39):21479−21485. doi: 10.1002/anie.202107996
    [27] PAN L M, FU W Q, ZHANG L, et al. Highly dispersed Co species in N-doped carbon enhanced the aldehydes ammoxidation reaction activity[J]. Mol Catal,2022,518:112087. doi: 10.1016/j.mcat.2021.112087
    [28] YANG S W, CHEN J Z. Kinetic analysis of consecutive/parallel transformation of furfural to biomass-based primary amide by using a “concentration–time” integral[J]. ACS Catal,2022,13(1):113−131.
    [29] KIDWAI M, BANSAL V, SAXENA A, et al. Cu-nanoparticles: efficient catalysts for the oxidative cyclization of Schiffs’ bases[J]. Tetrahedron Lett,2006,47(46):8049−8053. doi: 10.1016/j.tetlet.2006.09.066
    [30] ZHOU Y K, LIU W, LIU Y C, et al. Oxidative NHC catalysis for base-free synthesis of benzoxazinones and benzoazoles by thermal activated NHCs precursor ionic liquid catalyst using air as oxidant[J]. Mol Catal,2020,492:111013. doi: 10.1016/j.mcat.2020.111013
    [31] CHARI M A, SHOBHA D, SASAKI T. Room temperature synthesis of benzimidazole derivatives using reusable cobalt hydroxide (II) and cobalt oxide (II) as efficient solid catalysts[J]. Tetrahedron Lett,2011,52(43):5575−5580. doi: 10.1016/j.tetlet.2011.08.047
    [32] LIN C C, WAN W H, WEI X T, et al. H2 activation with Co nanoparticles encapsulated in N-doped carbon nanotubes for green synthesis of benzimidazoles[J]. ChemSusChem,2021,14(2):709−720. doi: 10.1002/cssc.202002344
    [33] TANAKA S, ASHIDA K, TATSUTA G, et al. Preparation of fluorescent materials from biomass-derived furfural and natural amino acid cysteine through cross-coupling reactions for extended π-conjugation[J]. Synlett,2015,26(11):1496−1500. doi: 10.1055/s-0034-1380460
    [34] SONG S, YUEN V F K, DI L, et al. Integrating biomass into the organonitrogen chemical supply chain: production of pyrrole and D-proline from furfural[J]. Angew Chem Int Ed Engl,2020,59(45):19846−19850. doi: 10.1002/anie.202006315
    [35] YAO Q, Xu L J, Han Z, et al. Production of indoles via thermo-catalytic conversion and ammonization of bio-derived furfural[J]. Chem Eng J,2015,280:74−81. doi: 10.1016/j.cej.2015.05.094
    [36] QI H F, LI Y R, ZHOU Z T, et al. Synthesis of piperidines and pyridine from furfural over a surface single-atom alloy Ru1CoNP catalyst[J]. Nat Commun,2023,14(1):6329. doi: 10.1038/s41467-023-42043-6
    [37] MULLER C, DIEHL V, LICHTENTHALER F W. Building blocks from sugars: Part. 23. : Hydrophilic 3-pyridinols from fructose and isomaltulose[J]. Tetrahedron,1998,54(36):10703−10712. doi: 10.1016/S0040-4020(98)00634-6
  • 加载中
图(10)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  13
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-18
  • 修回日期:  2024-03-03
  • 录用日期:  2024-03-06
  • 网络出版日期:  2024-04-02

目录

    /

    返回文章
    返回