留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

废弃生物质催化热解制富氢燃气:催化剂性能的影响

李学琴 刘鹏 卢岩 王志伟 吴幼青 雷廷宙

李学琴, 刘鹏, 卢岩, 王志伟, 吴幼青, 雷廷宙. 废弃生物质催化热解制富氢燃气:催化剂性能的影响[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024011
引用本文: 李学琴, 刘鹏, 卢岩, 王志伟, 吴幼青, 雷廷宙. 废弃生物质催化热解制富氢燃气:催化剂性能的影响[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024011
LI Xueqin, LIU Peng, LU Yan, WANG Zhiwei, WU Youqing, LEI Tingzhou. Catalytic pyrolysis of waste biomass to produce hydrogen-rich gas:Influence of catalyst performance[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024011
Citation: LI Xueqin, LIU Peng, LU Yan, WANG Zhiwei, WU Youqing, LEI Tingzhou. Catalytic pyrolysis of waste biomass to produce hydrogen-rich gas:Influence of catalyst performance[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024011

废弃生物质催化热解制富氢燃气:催化剂性能的影响

doi: 10.19906/j.cnki.JFCT.2024011
基金项目: 国家重点研发计划(2022YFB4201901)和江苏省碳达峰碳中和科技创新专项资金项目(BE2022426)资助
详细信息
    通讯作者:

    E-mail: China_newenergy@163.com

  • 中图分类号: TK6

Catalytic pyrolysis of waste biomass to produce hydrogen-rich gas:Influence of catalyst performance

Funds: The project was supported by the National Key Reasearch & Development Program of China (2022YFB4201900) and Carbon reaches peak and carbon neutrality Scientific and technological Innovation of Jiangsu province (BE2022426).
  • 摘要: 本研究通过超声波辅助过量浸渍法将活性组分镍、助剂铁与HZSM-5分子筛结合来提高富氢燃气的产率;进一步以废弃铝灰与HZSM-5分子筛作为共载体制备铝灰与HZSM-5分子筛符合共载镍-铁催化剂并将其用于强化生物质催化热解产富氢燃气的过程。结果表明,在热解温度700 ℃下,Ni-Fe/HZSM-5可使富氢燃气的产率提高到56.49%(约为230.59 mL/g),氢气产率提高到63.12%,产氢效率提高到0.71%,CO得率增加到65.77 mL/g;足够的Ni-Fe/HZSM-5催化剂量强化了生物质热解的产氢路径,促进了积炭气化反应,起到提高H2和CO产率的双重作用。不同种类生物质的组成差异导致催化热解的产物分布也不同,Ni-Fe/HZSM-5催化生物质热解气体产率的顺序为PR(74.21%)>WSt(54.71%)>CR(53.5%)>MCh(52.47%)>WSh(52.10%)>CS(46.49%)。HZSM-5和ASA载体间的协同作用强化了CH4与CO2的重整过程,抑制了逆水汽变换反应,获得了53.37%和41.56%的气体和焦油产率;并加速了积炭气化反应从而减少了积炭量(0.05g/g),获得了5.07%的半焦产率;Ni-Fe/ASA@HZSM-5具有较好的热裂化能力和脱氧能力,有助于促进HZSM-5催化剂上富氢燃气的生成;为开发高温热解气深度净化与高效利用技术提供理论支撑,有效指导多级催化重整的新型双催化床层的开发。
  • 图  1  新鲜催化剂的SEM谱图

    Figure  1  SEM spectrum of fresh catalyst

    图  2  生物质热解反应的装置

    Figure  2  Device for the biomass pyrolysis reaction

    图  3  不同升温速率下玉米秸秆(a)麻栗壳(b)椿木屑(c)核桃壳(d)麦秸秆(e)杨木屑(f)的TG/DTG曲线

    Figure  3  TG/DTG curve of CS(a), MCh(b), CR(c), WSh(d), WSt(e), PR(f) at different heating rates

    图  4  热解温度对产物分布规律的影响(a)三相产物分布(b)气体得率

    Figure  4  Effect of pyrolysis temperature on product distribution(a) three-phase product distribution (b) gas yield

    图  5  催化剂用量对玉米秸秆热解释放气体速率的影响

    Figure  5  Effect of catalytic dosage on gas release from pyrolysis of CS

    图  6  催化剂用量对产物分布的影响(a)气体产率(b)液体产物分布

    注:酸类物质(Acid, AC)、酮类物质(Ketones, KE)、醛类物质(Aldehydes, AL)、醇类物质(Alcohol, ALc)、酚类物质(Phenolic, PH)、呋喃类物质(Furan, FU)、酯类物质(Esters, ES)、烷烃类物质(Alkyl hydrocarbons, ALk)、其他(other)

    Figure  6  Effect of catalytic dosage on products distribution (a) Gas yield (b) distribution of liquid products

    图  7  催化剂类型对热解产物分布的影响

    Figure  7  Effect of catalyst types on the distribution of pyrolysis products

    图  8  HZSM-5分子筛的多孔道结构

    Figure  8  Porous structure of HZSM-5

    图  9  催化剂类型对玉米秸秆热解气体产物及氢碳转化率的影响(a)气体产物得率(b)氢、碳得率

    Figure  9  Effects of catalyst types on gas products and conversion of H, C (a) gas yield (b) yield of H and C

    图  10  不同催化剂催化玉米秸秆热解的液体产物分布

    Figure  10  Liquid product distribution of CS pyrolysis catalyzed by different catalysts

    图  11  不同催化剂催化玉米秸秆热解的产物分布规律

    Figure  11  Effect of five catalysts on the product distribution of CS pyrolysis

    图  12  催化生物质热解的产物分布(a)三相产物分布(b)气体产率

    Figure  12  Product distribution of catalytic pyrolysis of biomass(a)three-phase product distribution (b) gas yield

    图  13  催化生物质热解的产物分布规律

    Figure  13  Product distribution rules for catalytic pyrolysis of biomass

    表  1  新鲜催化剂的物理特性及孔道特性

    Table  1  Physical properties and pore distribution of fresh catalysts

    Fresh catalyst BET surface area/(m2·g−1) t-plot micropore area/(m2·g−1) t-Plot external surface area/(m2·g−1) Total pore
    volume/(cm3·g−1)
    Pore size
    /nm
    ASA 262.13 0.44 6.75
    HZSM-5 276.21 145.49 130.72 0.23 3.26
    Ni/HZSM-5 241.83 155.48 86.35 0.19 3.16
    Ni-Fe/HZSM-5 219.50 133.02 84.48 0.17 3.11
    Ni-Fe/ASA@HZSM-5 195.90 107.59 88.31 0.16 3.17
    下载: 导出CSV

    表  2  不同升温速率下玉米秸秆热解反应动力学参数

    Table  2  Kinetic parameters of CS pyrolysis under different heating rates

    β/(mL·min−1) CS MCh CR
    E/(kJ·mol−1) A/min−1 E/(kJ·mol−1) A/min−1 E/(kJ·mol−1) A/min−1
    10 74.96 1498.02 74.88 1474.39 73.04 1237.76
    20 73.21 1253.56 73.50 1290.48 72.27 1150.18
    30 72.81 1210.30 74.60 1430.49 72.44 1169.72
    40 72.61 1186.40 73.75 1316.83 71.77 1099.88
    β/(mL·min−1) WSh WSt PR
    E/(kJ·mol−1) A/min−1 E/(kJ·mol−1) A/min−1 E/(kJ·mol−1) A/min−1
    10 71.33 1059.17 72.48 1178.61 73.89 1341.81
    20 71.51 1073.74 72.20 1143.25 72.22 1144.56
    30 71.69 1093.54 72.18 1143.54 71.69 1091.38
    40 71.95 1119.70 72.48 1179.23 71.63 1084.02
    下载: 导出CSV

    表  3  生物质热解的反应动力学参数

    Table  3  Reaction kinetic parameters of biomass pyrolysis

    Sample E/(kJ·mol−1) A/min−1 Sample E/(kJ·mol−1) A/min−1
    CS 73.39 1237.27 WSh 71.62 1061.48
    MCh 74.18 1379.27 WSt 72.34 1142.08
    CR 72.38 1147.11 PR 72.36 1144.39
    下载: 导出CSV

    表  4  反应后催化剂的孔道特性

    Table  4  Pore characteristics of reacted catalysts

    Reacted catalyst ASA HZSM-5 Ni/HZSM-5 Ni-Fe/HZSM-5 Ni-Fe/ASA@HZSM-5
    BET surface area/(m2·g−1) 48.95 219.99 235.49 214.4 136.12
    t-plot micropore area/(m2·g−1) 33.09 157.67 167.17 172.84 104.48
    t-plot external surface area/(m2·g−1) 15.86 62.32 68.32 41.56 31.64
    Total pore volume/(cm3·g−1) 0.09 0.15 0.18 0.15 0.1
    Pore size/nm 7.13 2.75 3.03 2.72 2.94
    Average nanoparticle size/nm 122.58 27.27 25.48 27.99 44.08
    下载: 导出CSV
  • [1] SALAMA E S, HWANG J H, ELDALATONY M M, et al. Enhancement of microalgal growth and biocomponent-based transformations for improved biofuel recovery: A review[J]. Bioresour Technol,2018,258:365−375. doi: 10.1016/j.biortech.2018.02.006
    [2] SURIAPPARAO D V, TEJASVI R. A review on role of process parameters on pyrolysis of biomass and plastics: Present scope and future opportunities in conventional and microwave-assisted pyrolysis technologies[J]. Process Saf Environ,2022,162:435−462. doi: 10.1016/j.psep.2022.04.024
    [3] HU X, GHOLIZADEH M. Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage[J]. J Energy Chem,2019,39(12):109−143.
    [4] HUO X, XIAO J, SONG M, et al. Comparison between in-situ and ex-situ catalytic pyrolysis of sawdust for gas production[J]. J Anal Appl Pyrolysis,2018,135:189−198. doi: 10.1016/j.jaap.2018.09.003
    [5] GUPTA S, MONDAL P. Catalytic pyrolysis of pine needles with nickel doped gamma-alumina: Reaction kinetics, mechanism, thermodynamics and products analysis[J]. J Clean Prod,2021,286(1):124930.1−124930.12.
    [6] HERNANDO H, MORENO I, FERMOSO J, et al. Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides[J]. Biomass Convers Bior,2017,7(3):289−304. doi: 10.1007/s13399-017-0266-6
    [7] LI Y, NI S, YELLEZUOME D, et al. Deactivation mechanism and regeneration effect of bi-metallic Fe-Ni/ZSM-5 catalyst during biomass catalytic pyrolysis[J]. Fuel,2022,312(15):122924.1−122924.10.
    [8] LI X, LIU P, WU S, et al. Study on the mechanism of syngas production from catalytic pyrolysis of biomass tar by Ni–Fe catalyst in CO2 atmosphere[J]. Fuel,2022,11(17):126705.
    [9] LI X, LIU P, LEI T, et al. Pyrolysis of biomass Tar model compound with various Ni-based catalysts: Influence of promoters characteristics on hydrogen-rich gas formation[J]. Energy,2022,244(PB):123137.
    [10] LI X, LIU P, CHEN W, et al. Catalytic pyrolysis of toluene as biomass tar model component using Ni/HZSM-5 modified by CeO2 and MgO promoters[J]. J Anal Appl Pyrolysis,2022,162:105436.1−105436.11.
    [11] LI X, Chen Z, LIU P, et al. Feasibility assessment of recycling waste aluminum dross as a basic catalyst for biomass pyrolysis to produce hydrogen-rich gas[J]. Int J Hydrog Energy,2023,48(93):36361−36376. doi: 10.1016/j.ijhydene.2023.06.049
    [12] SINGH S, CHAKRABORTY J P, MONDAL M K. Intrinsic kinetics, thermodynamic parameters and reaction mechanism of non-isothermal degradation of torrefied Acacia nilotica using isoconversional methods[J]. Fuel,2020,259(1):116263.1−116263.15.
    [13] ZHAO B, YANG H, ZHANG H, et al. Study on hydrogen-rich gas production by biomass catalytic pyrolysis assisted with magnetic field[J]. J Anal Appl Pyrolysis,2021,157(Aug):105227.1−105227.10.
    [14] SHARMA P, PANDEY O P, DIWAN P K. Non-isothermal kinetics of pseudo-components of waste biomass[J]. Fuel,2019,253:1149−1161. doi: 10.1016/j.fuel.2019.05.093
    [15] 许敏. 生物质热解气化特性分析与试验研究[D]. 天津: 天津大学, 2008.

    XU MIN. Mechanism and experimental study on biomass gasification and pyrolysis[D]. Tianjin: Tianjin University, 2021.)
    [16] QIN Z, YOU Z, BOZHILOV K N, et al. Dissolution behavior and varied mesoporosity of zeolites by NH4 F etching[J]. Chem Eur J,2022,28(16):e202104339. doi: 10.1002/chem.202104339
    [17] HU Z, HAN J, WEI Y, et al. Dynamic evolution of zeolite framework and metal-zeolite interface[J]. ACS Catal,2022,12(9):5060−5076. doi: 10.1021/acscatal.2c01233
    [18] KOSTYNIUK A, BAJEC D, LIKOZAR B. Catalytic hydrocracking reactions of tetralin as aromatic biomass tar model compound to benzene/toluene/xylenes (BTX) over zeolites under ambient pressure conditions[J]. J Ind Eng Chem,2021,96(1):130−143.
    [19] LI X, LIU P, HUANG S, et al. Study on the mechanism of syngas production from catalytic pyrolysis of biomass tar by Ni–Fe catalyst in CO2 atmosphere[J]. Fuel,2023,335(1):1−12.
    [20] FATHI S, SOHRABI M, FALAMAKI C. Improvement of HZSM-5 performance by alkaline treatments: Comparative catalytic study in the MTG reactions[J]. Fuel,2014,116:529−537. doi: 10.1016/j.fuel.2013.08.036
    [21] TANG W, CAO J, YANG F, et al. Highly active and stable HF acid modified HZSM-5 supported Ni catalysts for steam reforming of toluene and biomass pyrolysis tar[J]. Energy Convers Manag,2020,212:112799.1−112799.12.
    [22] MAHINROOSTA M, ALLAHVERDI A. Hazardous aluminum dross characterization and recycling strategies: A critical review[J]. J Environ Manage,2018,223:452−468. doi: 10.1016/j.jenvman.2018.06.068
    [23] 孙堂磊. 木质纤维素类生物质定向热解产物分布规律及实验研究[D]. 河南: 河南农业大学, 2021.

    SUN Tanglei. Product distribution and experimental study of lignocellulosic biomass directional pyrolysis[D]. Henan: Henan Agricultural University, 2021.)
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  15
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-25
  • 修回日期:  2024-01-31
  • 录用日期:  2024-03-20
  • 网络出版日期:  2024-03-30

目录

    /

    返回文章
    返回