留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固相外延生长法制备ZSM-5@Silicalite-1分子筛及其CO2加氢耦合甲苯烷基化反应的影响

贾艺敏 牛鹏宇 贾丽涛 林明桂 郭荷芹 肖勇 侯博 李德宝

贾艺敏, 牛鹏宇, 贾丽涛, 林明桂, 郭荷芹, 肖勇, 侯博, 李德宝. 固相外延生长法制备ZSM-5@Silicalite-1分子筛及其CO2加氢耦合甲苯烷基化反应的影响[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024012
引用本文: 贾艺敏, 牛鹏宇, 贾丽涛, 林明桂, 郭荷芹, 肖勇, 侯博, 李德宝. 固相外延生长法制备ZSM-5@Silicalite-1分子筛及其CO2加氢耦合甲苯烷基化反应的影响[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024012
JIA Yimin, NIU Pengyu, JIA Litao, LIN Minggui, GUO Heqin, XIAO Yong, HOU Bo, LI Debao. Effect of ZSM-5@Silicalite-1 zeolites prepared by solid phase epitaxial growth method on CO2 hydrogenation and toluene alkylation reactions[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024012
Citation: JIA Yimin, NIU Pengyu, JIA Litao, LIN Minggui, GUO Heqin, XIAO Yong, HOU Bo, LI Debao. Effect of ZSM-5@Silicalite-1 zeolites prepared by solid phase epitaxial growth method on CO2 hydrogenation and toluene alkylation reactions[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024012

固相外延生长法制备ZSM-5@Silicalite-1分子筛及其CO2加氢耦合甲苯烷基化反应的影响

doi: 10.19906/j.cnki.JFCT.2024012
基金项目: 山西省重点研发计划 (202102090301003)资助
详细信息
    通讯作者:

    Tel: 0351-4040428, E-mail: niupy@sxicc.ac.cn

    jialitao910@163.com

  • 中图分类号: O643

Effect of ZSM-5@Silicalite-1 zeolites prepared by solid phase epitaxial growth method on CO2 hydrogenation and toluene alkylation reactions

Funds: The project was supported by the Basic Research Program of Shanxi key research project (202102090301003).
  • 摘要: CO2加氢合成高附加值的芳烃对于缓解CO2排放引起的能源气候问题具有重要意义。本研究采用固相法在ZSM-5表面外延生长Silicalite-1,制备出ZSM-5@Silicalite-1分子筛。同时制备高活性氧化物ZnZrOx,并与ZSM-5@Silicalite-1物理混合组成ZnZrOx/ ZSM-5@Silicalite-1双功能催化剂,研究了CO2加氢耦合甲苯烷基化催化性能。相比于ZnZrOx/ZSM-5催化剂,分子筛改性后的双功能催化剂提高了对二甲苯(PX)选择性。研究了晶化条件(硅源、晶化过程、晶化次数)对ZSM-5外延生长Silicalite-1的影响,以及Silicalite-1钝化层厚度对CO2加氢耦合甲苯烷基化反应性能的影响。在400 ℃、3 MPa反应条件下,ZZO/1:3.5Z5-Na-SiO2催化剂的甲苯转化率为12.0%,二甲苯选择性为77.4%,在二甲苯中对二甲苯选择性为73.4%。通过SEM、XRD、N2吸附-脱附、XPS、NH3-TPD、Py-FTIR等表征,研究了分子筛的结构和酸性质。结果表明,通过固相外延生长,延长ZSM-5的孔道,增加间二甲苯(MX)、邻二甲苯(OX)的扩散阻力,同时钝化外表面的酸性,可以有效提高对二甲苯(PX)的选择性。固相外延生长法改性ZSM-5分子筛,摒弃了以往堵塞孔以缩小孔口改性分子筛的缺点,在保证催化剂活性的同时提高了产物选择性。
  • 图  1  样品(a)ZSM-5、S1:1Z5-Na-SiO2-1、S1:1Z5-TEOS-1、S1:1Z5-NH3-SiO2-1、S1:1Z5-SiO2-1,(b)S1:1Z5-Na-SiO2-2、S1:1Z5-TEOS-2、S1:1Z5-NH3-SiO2-2、S1:1Z5-SiO2-2,(c)D1:1Z5-Na-SiO2、D1:1Z5-TEOS、D1:1Z5-NH3-SiO2、D1:1Z5-SiO2的XRD谱图;(d)ZSM-5、S1:1Z5-Na-SiO2-1、S1:1Z5-TEOS-1、S1:1Z5-NH3-SiO2-1、S1:1Z5-SiO2-1的N2吸附-脱附等温线

    Figure  1  (a) XRD patterns of ZSM-5, S1:1Z5-Na-SiO2-1, S1:1Z5-TEOS-1, S1:1Z5-NH3-SiO2-1, and S1:1Z5-SiO2-1; (b) XRD patterns of S1:1Z5-Na-SiO2-2, S1:1Z5-TEOS-2, S1:1Z5-NH3-SiO2-2, and S1:1Z5-SiO2-2; (c) XRD patterns of D1:1Z5-Na-SiO2, D1:1Z5-TEOS, D1:1Z5-NH3-SiO2, and D1:1Z5-SiO2; and (d) N2 adsorption-desorption isotherms of ZSM-5, S1:1Z5-Na-SiO2-1, S1:1Z5-TEOS-1, S1:1Z5-NH3-SiO2-1, and S1:1Z5-SiO2-1

    图  2  样品(a)ZSM-5,(b1-e1)S1:1Z5-Na-SiO2/TEOS/NH3-SiO2/SiO2-1,(b2-e2)S1:1Z5-Na-SiO2/TEOS/NH3-SiO2/SiO2-2,(b3-e3)D1:1Z5-Na-SiO2/TEOS/NH3-SiO2/SiO2的SEM图像

    Figure  2  SEM images of samples (a) ZSM-5, (b1-e1) S1:1Z5-Na-SiO2/TEOS/NH3-SiO2/SiO2-1, (b2-e2) S1:1Z5-Na-SiO2/TEOS/NH3-SiO2/SiO2-2, and (b3-e3) D1:1Z5-Na-SiO2/TEOS/NH3-SiO2/SiO2

    图  3  ZSM-5、S1:1Z5-Na-SiO2-1、S1:1Z5-TEOS-1、S1:1Z5-NH3-SiO2-1、S1:1Z5-SiO2-1的(a)XPS Al 2p谱图,(b)NH3-TPD曲线,(c)350 ℃的Py-FTIR谱图和(d)ZSM-5、S1:1Z5-Na-SiO2-2、S1:1Z5-TEOS-2、S1:1Z5-NH3-SiO2-2和S1:1Z5-SiO2-2的350 ℃ Py-FTIR谱图

    Figure  3  (a) XPS Al 2p spectra, (b) NH3-TPD curves and (c) Py-FTIR spectra at 350°C for ZSM-5, S1:1Z5-Na-SiO2-1, S1:1Z5-TEOS-1, S1:1Z5-NH3-SiO2-1, S1:1Z5-SiO2-1, and (d) 350°C Py-FTIR spectra of ZSM-5, S1:1Z5-Na-SiO2-2,S1:1Z5-TEOS-2, S1:1Z5-NH3-SiO2-2, and S1:1Z5-SiO2-2

    图  4  ZSM-5、1:1Z5-Na-SiO2、1:2Z5-Na-SiO2、1:3Z5-Na-SiO2、1:3.5Z5-Na-SiO2和1:4Z5-Na-SiO2的(a)XRD谱图和(b)N2吸附-脱附等温线

    Figure  4  (a) XRD patterns and (b) N2 adsorption-desorption isotherms of ZSM-5, 1:1Z5-Na-SiO2, 1:2Z5-Na-SiO2,1:3Z5-Na-SiO2, 1:3.5Z5-Na-SiO2 and 1:4Z5-Na-SiO2

    图  5  催化剂的SEM图像

    Figure  5  SEM images of catalysts

    (a) ZSM-5; (b) 1:1Z5-Na-SiO2; (c) 1:2Z5-Na-SiO2; (d) 1:3Z5-Na-SiO2; (e) 1:3.5Z5-Na-SiO2; (f) 1:4Z5-Na-SiO2

    图  6  ZSM-5、1:1Z5-Na-SiO2、1:2Z5-Na-SiO2、1:3Z5-Na-SiO2、1:3.5Z5-Na-SiO2和1:4Z5-Na-SiO2的(a)NH3-TPD曲线和(b)350 ℃的Py-FTIR谱图

    Figure  6  (a) NH3-TPD curves and (b) Py-FTIR spectra of ZSM-5, 1:1Z5-Na-SiO2, 1:2Z5-Na-SiO2, 1:3Z5-Na-SiO2,1:3.5Z5-Na-SiO2 and 1:4Z5-Na-SiO2 at 350°C

    图  7  ZnZrOx的(a)SEM图像,(b)XRD谱图,(c)Raman谱图和(d)N2吸附-脱附等温线

    Figure  7  (a) SEM image, (b) XRD patterns, (c) Raman spectra and (d) N2 adsorption-desorption isotherms of ZnZrOx

    图  8  ZnZrOx的(a)H2-TPR谱图,(b)XPS O 1s 谱图,(c)EPR谱图,(d)CO2-TPD谱图和(e)H2-TPD谱图

    Figure  8  (a) H2-TPR curve, (b) XPS O 1s spectra, (c) EPR spectra, (d) CO2-TPD curve and (e) H2-TPD curve of ZnZrOx

    图  9  CO2加H2与甲苯烷基化反应(a)在不同硅源制备的ZSM-5@Silicalite-1和ZnZrOx的双功能催化剂上的液相产物选择性,(b)气相产物选择性,(c)不同晶化次数的ZSM-5@Silicalite-1和ZnZrOx的双功能催化剂上的液相产物选择性和(d)不同钝化层厚度分子筛和ZnZrOx的双功能催化剂上的液相产物选择性,反应条件:400 ℃,3 MPa,H2/CO2为3∶1,GHSV为9000 h−1,甲苯LHSV为2 h−1

    Figure  9  CO2 hydrogenation and toluene alkylation reactions (a) liquid-phase product selectivity over bifunctional catalysts of ZSM-5@Silicalite-1 and ZnZrOx prepared with different silicon sources, (b) gas-phase product selectivity, (c) liquid-phase product selectivity over bifunctional catalysts of ZSM-5@Silicalite-1 and ZnZrOx with different numbers of crystallizations and (d) liquid-phase product selectivity over bifunctional catalysts of zeolites with different shell thicknesses and ZnZrOx. Reaction conditions: 400 ℃, 3 MPa, H2/CO2=3/1, GHSV=9000 h−1, and LHSV of toluene = 2 h−1.

    表  1  ZSM-5和S1:1Z5@Silicalite-1分子筛的织构性质

    Table  1  Textural properties of ZSM-5 and S1:1Z5@Silicalite-1 zeolite

    Catalyst Relative crystallinity/% BET surface area S/(m2·g−1) Pore volume v/(cm3·g−1) Pore size d/nm
    ZSM-5 100 364 0.15 1.92
    S1:1Z5-SiO2-1 87 325 0.13 3.96
    S1:1Z5-SiO2-2 84 443 0.18 5.68
    S1:Z5- Na-SiO2-1 95 337 0.11 3.21
    S1:1Z5-Na-SiO2-2 82 324 0.14 4.95
    S1:1Z5-NH3-SiO2-1 96 258 0.10 3.41
    S1:1Z5-NH3-SiO2-2 73 253 0.10 5.09
    S1:1Z5-TEOS-1 96 413 0.17 2.17
    S1:1Z5-TEOS-2 97 360 0.15 1.96
    下载: 导出CSV

    表  2  350 ℃下从Py-FTIR得到的ZSM-5和S1:1Z5@Silicalite-1分子筛的B酸和L酸量

    Table  2  Amounts of Brønsted and Lewis acids of ZSM-5 and S1:1Z5@Silicalite-1 zeolite from Py-FTIR at 350°C

    Catalyst L/(μmol·g−1) B+L/(μmol·g−1) B/(μmol·g−1) B/L Total/(μmol·g−1)
    ZSM-5 2.8 29.6 15.2 5.4 47.5
    S1:1Z5-Na-SiO2-1 1.2 25.1 5.7 4.75 32.0
    S1:1Z5-Na-SiO2-2 0.8 26.0 9.2 11.5 36.0
    S1:1Z5-TEOS-1 3.3 57.5 33.5 10.2 94.3
    S1:1Z5-TEOS-2 2.2 35.6 25.6 11.6 63.3
    S1:1Z5-NH3-SiO2-1 2.2 25.6 10.1 4.6 37.9
    S1:1Z5-NH3-SiO2-2 0.7 30.5 11.7 16.7 43.0
    S1:1Z5-SiO2-1 1.2 24.8 11.0 9.2 37.0
    S1:1Z5-SiO2-2 1.0 28.5 15.5 15.5 45.0
    下载: 导出CSV

    表  3  不同钝化层厚度ZSM@Silicalite-1分子筛的织构性质

    Table  3  Textural properties of ZSM@Silicalite-1 zeolites with different shell thicknesses

    Catalyst BET surface area S/(m2·g−1) Pore volume v/(cm3·g−1) Pore size d/nm
    ZSM-5 383 0.14 1.63
    1:1Z5- Na-SiO2 337 0.11 3.21
    1:2Z5- Na-SiO2 202 0.05 5.13
    1:3Z5- Na-SiO2 165 0.04 5.18
    1:3.5Z5- Na-SiO2 139 0.03 6.5
    1:4Z5- Na-SiO2 143 0.03 6.6
    下载: 导出CSV

    表  4  350 ℃下从Py-FTIR得到的不同钝化层厚度分子筛的B酸和L酸量

    Table  4  Amounts of Brønsted and Lewis acids of zeolite with different shell thicknesses from Py-FTIR at 350 ℃

    Catalyst L/(μmol·g−1) B+L/(μmol·g−1) B/(μmol·g−1) B/L Total/(μmol·g−1)
    ZSM-5 2.8 29.6 15.2 5.4 47.5
    1:1Z5-Na-SiO2 1.2 23.1 9.8 8.2 34.1
    1:2Z5-Na-SiO2 0.8 7.5 4.3 5.4 12.6
    1:3Z5-Na-SiO2 0.8 3.9 2.7 3.4 7.5
    1:3.5Z5-Na-SiO2 0.6 3.8 1.9 3.2 6.3
    1:4Z5-Na-SiO2 1.9 2.5 3.8 2 8.2
    下载: 导出CSV

    表  5  ZnZrOx的织构性质

    Table  5  Textural properties of ZnZrOx

    Catalyst BET surface area S/(m2·g−1) Pore volume v/(cm3·g−1) Pore size d/nm
    ZnZrOx 29 0.03 3
    下载: 导出CSV

    表  6  不同晶化条件催化剂上CO2加氢耦合甲苯烷基化反应气相产物分析

    Table  6  Gas-phase products analysis of CO2 hydrogenation and toluene alkylation over catalysts with different crystallization conditions

    Catalyst CO2 conv./% C1−C5 CO Smethy
    ZZO/Z5 18.6 33.1 59.9 7.0
    ZZO/S1:1Z5-TEOS-1 15.5 17.9 75.4 6.7
    ZZO/S1:1Z5-Na-SiO2-1 11.3 29.4 59.9 10.7
    ZZO/S1:1Z5-NH3-SiO2-1 15.4 53.1 39.5 7.4
    ZZO/S1:1Z5-SiO2-1 10.1 26.7 61.7 11.6
    下载: 导出CSV

    表  7  不同晶化条件催化剂上CO2加氢耦合甲苯烷基化反应液相产物分析

    Table  7  Liquid phase product analysis of CO2 hydrogenation and toluene alkylation over catalysts with different crystallization conditions

    Catalyst Conv.
    T/%
    Selectivity/% PX/X
    PX MX OX other
    ZZO/Z5 32.4 28.4 33.6 18.4 19.6 35.3
    ZZO/S1:1Z5-TEOS-1 36.3 27.1 33.9 18.2 20.8 34.2
    ZZO/S1:1Z5-TEOS-2 29.0 33.9 30.2 18.4 17.5 41.1
    ZZO/D1:1Z5-TEOS 29.3 20.4 41.0 18.4 20.2 25.5
    ZZO/S1:1Z5-SiO2-1 26.5 34.7 24.2 13.8 27.3 47.7
    ZZO/S1:1Z5-SiO2-2 29.5 23.8 35.2 17.3 23.7 28.4
    ZZO/D1:1Z5-SiO2 29.1 18.8 34.7 12.7 33.8 17.4
    ZZO/S1:1Z5-NH3-SiO2-1 23.3 40.4 21.1 13.3 25.2 54.0
    ZZO/S1:1Z5-NH3-SiO2-2 25.5 30.5 32.5 15.1 21.9 39.0
    ZZO/D1:1Z5-NH3-SiO2 12.7 29.7 28.8 27.9 13.6 34.4
    ZZO/S1:1Z5-Na-SiO2-1 23.9 41.9 19.9 13.2 25.0 55.8
    ZZO/S1:1Z5-Na-SiO2-2 10.1 34.9 26.8 14.7 23.6 45.7
    ZZO/D1:1Z5-Na-SiO2 1.3 23.1 14.0 24.1 38.8 26.2
    下载: 导出CSV
  • [1] TSAI T C, LIU S B, WANG I. Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts[J]. Appl Catal A:Gen,1999,181(2):355−398. doi: 10.1016/S0926-860X(98)00396-2
    [2] VERMEIREN W, GILSON J P. Impact of zeolites on the petroleum and petrochemical industry[J]. Top Catal,2009,52(9):1131−1161. doi: 10.1007/s11244-009-9271-8
    [3] DOOLAN P, PUJADO P. Make aromatics from LPG[J]. Hydrocarb Process, 1989, 68 (9).
    [4] BADURAIG A, ODEDAIRO T, AL-KHATTAF S. Disproportionation and methylation of toluene with methanol over zeolite catalysts[J]. Top Catal,2010,53:1446−1456. doi: 10.1007/s11244-010-9605-6
    [5] LEE S, KIM D, LEE J, et al. An in situ methylation of toluene using syngas over bifunctional mixture of Cr2O3/ZnO and HZSM-5[J]. Appl Catal A:Gen,2013,466:90−97. doi: 10.1016/j.apcata.2013.06.025
    [6] ZUO J, CHEN W, LIU J, et al. Selective methylation of toluene using CO2 and H2 to para-xylene[J]. Sci Adv,2020,6(34):2375−2548 .
    [7] WEN D, ZUO J, HAN X, et al. Synthesis of durene by methylation of 1, 2, 4-trimethylbenzene with syngas over bifunctional CuZnZrO x–HZSM-5 catalysts[J]. Catal Sci Technol,2022,12(8):2555−2565. doi: 10.1039/D2CY00037G
    [8] WANG Y, TAN L, TAN M, et al. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics[J]. ACS Catal,2018,9(2):895−901.
    [9] NI Y, CHEN Z, FU Y, et al. Selective conversion of CO2 and H2 into aromatics[J]. Nat Commun,2018,9(1):3457. doi: 10.1038/s41467-018-05880-4
    [10] LI Z, QU Y, WANG J, et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule,2019,3(2):570−583. doi: 10.1016/j.joule.2018.10.027
    [11] MA Y, WANG N, QIAN W, et al. Molded MFI nanocrystals as a highly active catalyst in a methanol-to-aromatics process[J]. RSC Adv,2016,6(84):81198−81202. doi: 10.1039/C6RA19035A
    [12] PINILLA-HERRERO I, BORFECCHIA E, HOLZINGER J, et al. High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics[J]. J Catal,2018,362:146−163. doi: 10.1016/j.jcat.2018.03.032
    [13] ZHU Z, XIE Z, CHEN Q, et al. Chemical liquid deposition with polysiloxane of ZSM-5 and its effect on acidity and catalytic properties[J]. Microporous Mesoporous Mater,2007,101(1-2):169−175. doi: 10.1016/j.micromeso.2006.12.016
    [14] KIM J-H, ISHIDA A, OKAJIMA M, et al. Modification of HZSM-5 by CVD of various silicon compounds and generation of para-selectivity[J]. J Catal,1996,161(1):387−392. doi: 10.1006/jcat.1996.0196
    [15] BAUER F, CHEN W, BILZ E, et al. Surface modification of nano-sized HZSM-5 and HFER by pre-coking and silanization[J]. J Catal,2007,251(2):258−270. doi: 10.1016/j.jcat.2007.08.009
    [16] SAYED M B, VéDRINE J C. The effect of modification with boron on the catalytic activity and selectivity of HZSM-5: I. Impregnation with boric acid[J]. J Catal,1986,101(1):43−55. doi: 10.1016/0021-9517(86)90227-7
    [17] JANARDHAN H, SHANBHAG G, HALGERI A. Shape-selective catalysis by phosphate modified ZSM-5: Generation of new acid sites with pore narrowing[J]. Appl Catal A:Gen,2014,471:12−18. doi: 10.1016/j.apcata.2013.11.029
    [18] DE MENEZES S C, LAM Y, DAMODARAN K, et al. Modification of H-ZSM-5 zeolites with phosphorus. 1. Identification of aluminum species by 27Al solid-state NMR and characterization of their catalytic properties[J]. Microporous Mesoporous Mater,2006,95(1-3):286−295. doi: 10.1016/j.micromeso.2006.05.032
    [19] HODALA J L, HALGERI A B, SHANBHAG G V. Phosphate modified ZSM-5 for the shape-selective synthesis of para-diethylbenzene: Role of crystal size and acidity[J]. Appl Catal A:Gen,2014,484:8−16. doi: 10.1016/j.apcata.2014.07.006
    [20] LI J, TONG K, XI Z, et al. Highly-efficient conversion of methanol to p-xylene over shape-selective Mg–Zn–Si-HZSM-5 catalyst with fine modification of pore-opening and acidic properties[J]. Catal Sci Technol,2016,6(13):4802−4813. doi: 10.1039/C5CY01979F
    [21] QU Y, LI Z, HU H, et al. Highly selective conversion of CO 2 to para-xylene over tandem catalysts[J]. ChemComm,2023,59(49):7607−7610.
    [22] VéDRINE J C, AUROUX A, DEJAIFVE P, et al. Catalytic and physical properties of phosphorus-modified ZSM-5 zeolite[J]. J Catal,1982,73(1):147−160. doi: 10.1016/0021-9517(82)90089-6
    [23] BREEN J P, BURCH R, KULKARNI M, et al. Improved selectivity in the toluene alkylation reaction through understanding and optimising the process variables[J]. Appl Catal A:Gen,2007,316(1):53−60. doi: 10.1016/j.apcata.2006.09.017
    [24] Lü R, TANGBO H, WANG Q, et al. Properties and characterization of modified HZSM-5 zeolites[J]. J Energy Chem,2003,12(1):56.
    [25] GHORBANPOUR A, GUMIDYALA A, GRABOW L C, et al. Epitaxial growth of ZSM-5@ Silicalite-1: A core–shell zeolite designed with passivated surface acidity[J]. ACS Nano,2015,9(4):4006−4016. doi: 10.1021/acsnano.5b01308
    [26] VAN VU D, MIYAMOTO M, NISHIYAMA N, et al. Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites[J]. Microporous Mesoporous Mater,2008,115(1-2):106−112. doi: 10.1016/j.micromeso.2007.12.034
    [27] WU Q, WANG X, QI G, et al. Sustainable synthesis of zeolites without addition of both organotemplates and solvents[J]. J Am Chem Soc,2014,136(10):4019−4025. doi: 10.1021/ja500098j
    [28] WU Q, MENG X, GAO X, et al. Solvent-free synthesis of zeolites: mechanism and utility[J]. Acc Chem Res,2018,51(6):1396−1403. doi: 10.1021/acs.accounts.8b00057
    [29] BIAN C, ZHANG C, PAN S, et al. Generalized high-temperature synthesis of zeolite catalysts with unpredictably high space-time yields (STYs)[J]. J Mater Chem A,2017,5(6):2613−2618. doi: 10.1039/C6TA09866E
    [30] ZHANG C, WU Q, LEI C, et al. Solvent-free and mesoporogen-free synthesis of mesoporous aluminosilicate ZSM-5 zeolites with superior catalytic properties in the methanol-to-olefins reaction[J]. Ind Eng Chem Res,2017,56(6):1450−1460. doi: 10.1021/acs.iecr.7b00062
    [31] WANG C, WANG L, ZHANG J, et al. Product selectivity controlled by zeolite crystals in biomass hydrogenation over a palladium catalyst[J]. J Am Chem Soc,2016,138(25):7880−7883. doi: 10.1021/jacs.6b04951
    [32] WU Q, LIU X, ZHU L, et al. Solvent-free synthesis of zeolites from anhydrous starting raw solids[J]. J Am Chem Soc,2015,137(3):1052−1055. doi: 10.1021/ja5124013
    [33] LIU Z, WU D, REN S, et al. Solvent-Free synthesis of c-Axis oriented ZSM-5 crystals with enhanced methanol to gasoline catalytic activity[J]. ChemCatChem,2016,8(21):3317−3322. doi: 10.1002/cctc.201600896
    [34] LU X, YANG Y, ZHANG J, et al. Solvent-free secondary growth of highly b-oriented MFI zeolite films from anhydrous synthetic powder[J]. J Am Chem Soc,2019,141(7):2916−2919. doi: 10.1021/jacs.9b00018
    [35] ZHANG J, WANG L, WU Z, et al. Solvent-free synthesis of core–shell Zn/ZSM-5@ silicalite-1 catalyst for selective conversion of methanol to BTX aromatics[J]. Ind Eng Chem Res,2019,58(34):15453−15458. doi: 10.1021/acs.iecr.9b03357
    [36] MOHAMED R M, ALY H M, EL-SHAHAT M F, et al. Effect of the silica sources on the crystallinity of nanosized ZSM-5 zeolite[J]. Microporous Mesoporous Mater,2005,79(1-3):7−12. doi: 10.1016/j.micromeso.2004.10.031
    [37] AL-JUBOURI S M. Synthesis of hierarchically porous ZSM-5 zeolite by self-assembly induced by aging in the absence of seeding-assistance[J]. Microporous Mesoporous Mater,2020,303:110296. doi: 10.1016/j.micromeso.2020.110296
    [38] WANG C, ZHANG L, HUANG X, et al. Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene[J]. Nat Commun,2019,10(1):4348. doi: 10.1038/s41467-019-12285-4
    [39] JIN D, YE G, ZHENG J, et al. Hierarchical silicoaluminophosphate catalysts with enhanced hydroisomerization selectivity by directing the orientated assembly of premanufactured building blocks[J]. ACS Catal,2017,7(9):5887−5902. doi: 10.1021/acscatal.7b01646
    [40] 吴保强, 马晓迅, 梁斌, 等. 甘油辅助HZSM-5分子筛的制备及其甲烷无氧芳构化催化性能研究[J]. 燃料化学学报,2020,48(7):821−832.

    WU Baoqiang, MA Xiaoxun, LIANG Bin, et al. Preparation of HZSM-5 zeolite assisted by glycerin and its catalytic performance for methane aromatization[J]. J Fuel Chem Technol,2020,48(7):821−832.
    [41] WANG Y, GUO X, ZHANG C, et al. Influence of calcination temperature on the stability of fluorinated nanosized HZSM-5 in the methylation of biphenyl[J]. Catal Letters,2006,107:209−214. doi: 10.1007/s10562-006-0004-3
    [42] LIU J, LI X, ZHAO Q, et al. The selective catalytic reduction of NO with propene over Cu-supported Ti–Ce mixed oxide catalysts: Promotional effect of ceria[J]. J Mol Catal A Chem,2013,378:115−123. doi: 10.1016/j.molcata.2013.06.005
    [43] EMEIS C. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal,1993,141(2):347−354. doi: 10.1006/jcat.1993.1145
    [44] HAN X, ZUO J, WEN D, et al. Toluene methylation with syngas to para-xylene by bifunctional ZnZrO x-HZSM-5 catalysts[J]. Chinese J Catal,2022,43(4):1156−1164. doi: 10.1016/S1872-2067(21)63975-X
    [45] DENG Y Q, ZHOU W F, LV H M, et al. Synthesis of HZSM-5@silicalite-1 core-shell composite and its catalytic application in the generation of p-xylene by methylation of toluene with methyl bromide[J]. RSC Adv,2014,4(70):37296−37301. doi: 10.1039/C4RA04126G
    [46] 潘旭, 杜冰, 黄鑫, 等. 孪晶 HZSM-5@ Silicalite-1 核壳结构催化剂的制备及甲苯甲醇烷基化性能研究[J]. 燃料化学学报 (中英文),2022,50(5):611−620.

    PAN Xu, DU Bing, HUANG Xin, et al. Preparation of core-shell structural twin HZSM-5@Silicalite-1 catalysts and its performance for toluene alkylation with methanol[J]. J Fuel Chem Technol,2022,50(5):611−620.
    [47] ZHANG J, QIAN W, KONG C, et al. Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst[J]. ACS Catal,2015,5(5):2982−2988. doi: 10.1021/acscatal.5b00192
    [48] WANG J, TANG C, LI G, et al. High-performance MaZrO x (Ma= Cd, Ga) solid-solution catalysts for CO2 hydrogenation to methanol[J]. ACS Catal,2019,9(11):10253−10259. doi: 10.1021/acscatal.9b03449
    [49] VASANTHAVEL S, KANNAN S. Structural investigations on the tetragonal to cubic phase transformations in zirconia induced by progressive yttrium additions[J]. J Phys Chem Solids,2018,112:100−105. doi: 10.1016/j.jpcs.2017.09.010
    [50] GAO P, ZHONG L, ZHANG L, et al. Yttrium oxide modified Cu/ZnO/Al2O3 catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Catal Sci Technol,2015,5(9):4365−4377. doi: 10.1039/C5CY00372E
    [51] ZHANG W, WANG S, GUO S, et al. Effective conversion of CO2 into light olefins over a bifunctional catalyst consisting of La-modified ZnZrO x oxide and acidic zeolite[J]. Catal Sci Technol,2022,12(8):2566−2577. doi: 10.1039/D2CY00210H
    [52] DANG S, QIN B, YANG Y, et al. Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity[J]. Sci Adv,2020,6(25):eaaz2060. doi: 10.1126/sciadv.aaz2060
    [53] SHANG X, LIU G D, SU X, et al. Preferential Synthesis of Toluene and Xylene from CO2 Hydrogenation in the Presence of Benzene through an Enhanced Coupling Reaction[J]. ACS Catal,2022,12(21):13741−13754. doi: 10.1021/acscatal.2c04314
    [54] YASHIMA T, SAKAGUCHI Y, NAMBA S. Selective formation of p-xylene by alkylation of toluene with methanol on ZSM-5 type zeolites[J]. Stud Surf Sci Catal,1981,7:739−751.
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  12
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-22
  • 修回日期:  2024-02-27
  • 录用日期:  2024-02-28
  • 网络出版日期:  2024-03-30

目录

    /

    返回文章
    返回