留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝源对Cu-Al尖晶石物化性质和逆水煤气变换性能的影响

刘雅杰 康荷菲 鲁晔 张鹏 葛晖

刘雅杰, 康荷菲, 鲁晔, 张鹏, 葛晖. 铝源对Cu-Al尖晶石物化性质和逆水煤气变换性能的影响[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024013
引用本文: 刘雅杰, 康荷菲, 鲁晔, 张鹏, 葛晖. 铝源对Cu-Al尖晶石物化性质和逆水煤气变换性能的影响[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024013
LIU Yajie, KANG Hefei, LU Ye, ZHANG Peng, GE Hui. Effect of Al source on the physicochemical properties of Cu-Al spinel catalysts and the catalytic performance for reverse water gas shift[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024013
Citation: LIU Yajie, KANG Hefei, LU Ye, ZHANG Peng, GE Hui. Effect of Al source on the physicochemical properties of Cu-Al spinel catalysts and the catalytic performance for reverse water gas shift[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024013

铝源对Cu-Al尖晶石物化性质和逆水煤气变换性能的影响

doi: 10.19906/j.cnki.JFCT.2024013
基金项目: 国家自然科学基金 (22202093) 和山西省青年科技研究基金(20210302123358)资助
详细信息
    通讯作者:

    Tel: 15364512088, E-mail: liuyjchem@126.com

  • 中图分类号: O643

Effect of Al source on the physicochemical properties of Cu-Al spinel catalysts and the catalytic performance for reverse water gas shift

Funds: The project was supported by the National Natural Science Foundation of China (22202093) and the Natural Science Foundation for Young Scientists of Shanxi Province of China (20210302123358).
  • 摘要: 基于高能球磨和固相焙烧的方法,采用杂质元素(Na、Fe、Si和S)含量不等的四种拟薄水铝石和氢氧化铜制备了Cu-Al尖晶石固溶体催化剂,通过ICP-AES、TG、XRD、H2-TPR和BET表征了催化剂的物化性质,并考察了对逆水煤气变换反应的催化性能。结果表明,拟薄水铝石中的杂质元素对于Cu-Al尖晶石催化剂的物相性质、还原性能、织构性质和催化性能有显著的影响,Si有助于合成高比表面积的催化剂,但不利于Cu-Al尖晶石生成,导致催化活性低;含有少量Na和Fe的尖晶石的催化活性较低;S物种经高温焙烧后分解,对催化活性没有影响;基于杂质元素含量最低的拟薄水铝石合成的催化剂中难还原尖晶石含量最高,表现出最高的逆水煤气变换催化活性。此外,基于活性最优样品的CO2-TPD-MS和In-situ DRIFTS分析表明,Al上形成的双齿甲酸盐是Cu-Al尖晶石固溶体催化CO2加氢生成CO的主要中间产物,其含量与催化活性随反应时间的变化规律一致。
  • 图  1  拟薄水铝石样品的物化性质

    Figure  1  Physicochemical properties of the pseudo-boehmite samples

    图  2  催化剂前驱体的XRD谱图

    Figure  2  XRD patterns of the precursors of catalysts

    图  3  Cu-Al尖晶石催化剂的XRD谱图

    Figure  3  XRD patterns of the Cu-Al spinel catalysts

    图  4  (a) Cu-Al尖晶石催化剂的H2-TPR谱图; (b) Cu还原程度

    Figure  4  (a) H2-TPR profiles of the Cu-Al spinel catalysts, (b) Cu reduction degree profiles

    图  5  Cu-Al尖晶石催化剂的N2吸附-脱附曲线

    Figure  5  N2 adsorption-desorption analysis of the Cu-Al spinel catalysts ((a) N2 adsorption-desorption isotherms; (b) Barrett-Joyner-Halenda (BJH) pore size distributions)

    图  6  (a) Cu-Al尖晶石催化CO2加氢制CO的催化性能; (b) CO选择性

    Figure  6  (a) Catalytic performance and (b) CO selectivity of the as-synthesized Cu-Al spinel catalysts in CO2 hydrogenation to CO

    图  7  反应后Cu-Al尖晶石催化剂的H2-TPR谱图

    Figure  7  H2-TPR profiles of the tested Cu-Al spinel catalysts

    图  8  反应后Cu-Al尖晶石催化剂的XRD谱图

    Figure  8  XRD patterns of the tested Cu-Al spinel catalysts

    图  9  CA(P1)的CO2-TPD-MS谱图

    Figure  9  CO2-TPD-MS profiles of the CA(P1) sample

    图  10  基于催化剂CA(P1)的漫反射原位红外光谱谱图

    Figure  10  In situ DRIFTS spectroscopy on CA(P1) catalyst

    表  1  拟薄水铝石样品中杂质元素的(Na、Fe、Si和S)含量

    Table  1  The content of impurity elements (Na, Fe, Si, and S) in the pseudo-boehmite samples

    PB Method Content/%
    Na2O Fe2O3 SiO2 ${\mathrm{SO}}_4^{2-} $
    P1 NaAlO2-Al(SO4)3 0.03 0.01 0.01
    P2 NaAlO2-Al(SO4)3 0.07 0.01 2.08
    YH1 Carbonization 0.10 0.05
    YH2 NaAlO2-Al(SO4)3 0.10 0.05 1.95
    下载: 导出CSV

    表  2  Cu-Al尖晶石催化剂的物化性质

    Table  2  Physicochemical properties of Cu-Al spinel catalysts

    Sample CA(P1) CA(P2) CA(YH1) CA(YH2)
    a/nm[a] 0.8038 0.8034 0.8032 0.8050
    dspinel/nm[b] 14.8 10.8 16.0 16.4
    X(spinel Cu2+)/%[c] 83.2 72.8 80.9 85.1
    X(non-spinel Cu2+)/%[c] 16.8 27.2 19.1 14.9
    X(hardly-reducible spinel Cu2+)/%[c] 30.5 14.8 26.7 22.5
    S/(m2·g−1)[d] 38.3 54.6 28.8 34.4
    v/(cm3·g−1)[d] 0.283 0.335 0.204 0.334
    Tested catalysts
    RD/%[e] 73.6 88.4 80.6 77.3
    Y(hardly-reducible spinel Cu2+)/%[f] 14.7 6.3 10.7 12.4
    dCu/nm[g] 10.3 9.6 10.8 10.9
    aT/nm[h] 0.7996 0.7961 0.7995 0.7994
    [a]: Spinel cell parameter; [b]: Spinel crystallite size; [c]: The conent of spinel Cu2+, non-spinel Cu2+, and hardly-reducible spinel Cu2+ species in the fresh catalysts; [d]: Surface area and pore volume; [e]: Cu releaing degree; [f]: The conent of hardly-reducible spinel Cu2+ species in the tested catalysts; [g]: Copper average size; [h]: The cell parameter of defect spinel in the tested catalysts.
    下载: 导出CSV
  • [1] ARESTA M, DIBENEDETTO A, QUARANTA E. State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: The distinctive contribution of chemical catalysis and biotechnology[J]. J Catal,2016,343:2−45. doi: 10.1016/j.jcat.2016.04.003
    [2] STEINHAUSER G. Cleaner production in the solvay process: general strategies and recent developments[J]. J Clean Prod,2008,16:833−841. doi: 10.1016/j.jclepro.2007.04.005
    [3] ARESTA M, DIBENEDETTO A, ANGELINI A. The changing paradigm in CO2 utilization[J]. J CO2 Util, 2013, 3/4 , 65−73.
    [4] MARTENS J A, BOGAERTS A, DE KIMPE N, et al. The chemical route to a carbon dioxide neutral world[J]. ChemSusChem,2017,10:1039−1055. doi: 10.1002/cssc.201601051
    [5] BAHMANPOUR A M, SIGNORILE M, KRÖCHER O. Recent progress in syngas production via catalytic CO2 hydrogenation reaction[J]. Appl Catal B: Environ,2021,295:120319.
    [6] CHEN X D, CHEN Y, SONG C Y, et al. Recent advances in supported metal catalysts and oxide catalysts for the reverse water-gas shift reaction[J]. Front Chem,2020,8:709.
    [7] SU X, YANG X, ZHAO B, et al. Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: Recent advances and the future directions[J]. J Energy Chem,2017,26:854−867. doi: 10.1016/j.jechem.2017.07.006
    [8] XI H J, HOU X N, LIU Y J, et al. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem Int Ed,2014,53:11886−11889. doi: 10.1002/anie.201405213
    [9] LIU Y J, QING S J, HOU X N, et al. Temperature dependence of Cu-Al spinel formation and its catalytic performance in methanol steam reforming[J]. Catal Sci Technol,2017,7:5069−5078. doi: 10.1039/C7CY01236E
    [10] LIU Y J, QING S J, HOU X N, et al. Cu-Ni-Al spinel oxide as an efficient durable catalyst for methanol steam reforming[J]. ChemCatChem,2018,10:5698−5706. doi: 10.1002/cctc.201801472
    [11] HOU X N, QING S J, LIU Y J, et al. Cu1- x Mg x Al3 spinel solid solution as a sustained release catalyst: One-pot green synthesis and catalytic performance in methanol steam reforming[J]. Fuel,2021,284:119041. doi: 10.1016/j.fuel.2020.119041
    [12] LIU Y J, KANG H F, HOU X N, et al. Sustained release catalysis: Dynamic copper releasing from stoichiometric spinel CuAl2O4 during methanol steam reforming[J]. Appl Catal B: Environ,2023,323:122043. doi: 10.1016/j.apcatb.2022.122043
    [13] 轩晓蝶, 刘锰钰, 郭静静, 等. 拟薄水铝石合成及其性能研究进展[J]. 工业催化,2022,30:21−30.

    XUAN Xiaodie, LIU Mengyu, GUO Jingjing, et al. Progresson synthesis and properties of pseudo-boehmite[J]. Ind Catal,2022,30:21−30.
    [14] 朱尔一, 程兆年, 陈念贻. 用PLS方法研究种子分解中拜耳石形成条件[J]. 科学通报,1991,2:157−158.

    ZHU Eryi, CHENG Zhaonian, CHEN Nianyi. Study on the formation conditions of Bayerite in seed decomposition using PLS method[J]. Chin Sci Bull,1991,2:157−158.
    [15] YANG Y, XU Y, HAN B, et al. Effects of synthetic conditions on the textural structure of pseudo-boehmite[J]. J Colloid Interf Sci,2016,469:1−7. doi: 10.1016/j.jcis.2016.01.053
    [16] 唐国旗, 张春富, 孙长山, 等. 碳化法制备拟薄水铝石技术的研究进展[J]. 工业催化,2011,19:21−24.

    TAND Guoqi, ZHANG Chunfu, SUN Changshan, et al. Research advance on preparation of pseudo-boehmite with carbonization process[J]. Ind Catal,2011,19:21−24.
    [17] MICHELENE E M, MISTURE S T. Idealizing γ-Al2O3: In situ determination of nonstoichiometric spinel defect structure[J]. J Phys Chem C,2010,114:13039−13046. doi: 10.1021/jp102759y
    [18] 刘雅杰, 庆绍军, 侯晓宁, 等. Cu-Al 尖晶石的合成及非等温生成动力学分析[J]. 燃料化学学报,2020,48:338−348.

    LIU Yajie, Kang Hefei, HOU Xiaoning, et al. Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis[J]. J Fuel Chem Technol,2020,48:338−348.
    [19] LAM E, CORRAL-PEREZ J J, LARMIER K, et al. CO2 Hydrogenation on Cu/Al2O3: Role of the metal/support interface in driving activity and selectivity of a bifunctional catalyst[J]. Angew Chem Int Ed,2019,58:13989−13996. doi: 10.1002/anie.201908060
    [20] HU J, LI Y, ZHEN Y, et al. In situ FTIR and ex situ XPS/HS-LEIS study of supported Cu/Al2O3 and Cu/ZnO catalysts for CO2 hydrogenation[J]. Chin J Catal,2021,42:367−375. doi: 10.1016/S1872-2067(20)63672-5
    [21] WU C, LIN L, LIU J, et al. Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation[J]. Nat Commun,2020,11:5767. doi: 10.1038/s41467-020-19634-8
    [22] YANG Y, MIMS C A, DISSELKAMP R S, et al. Isotope effects in methanol synthesis and the reactivity of copper formates on a Cu/SiO2 catalyst[J]. Catal Lett,2008,125:201−208. doi: 10.1007/s10562-008-9592-4
    [23] FISHER I A, BELL A T. In-situ infrared study of methanol synthesis from H2[J]. J Catal,1998,178:153−173. doi: 10.1006/jcat.1998.2134
    [24] ATSBHA T A, YOON T, SEONGHO P, et al. A review on the catalytic conversion of CO2 using H2 for synthesis of CO, methanol, and hydrocarbons[J]. J CO2 Util,2021,44:101413. doi: 10.1016/j.jcou.2020.101413
    [25] PAHIJA E, PANARITIS C, GUSAROV S, et al. Experimental and computational synergistic design of Cu and Fe catalysts for the reverse water-gas shift: A review[J]. ACS Catal,2022,12:6887−6905. doi: 10.1021/acscatal.2c01099
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  6
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-13
  • 修回日期:  2024-03-28
  • 录用日期:  2024-03-29
  • 网络出版日期:  2024-04-13

目录

    /

    返回文章
    返回