Volume 49 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
LU Hong-zhu, BAI Ji-feng, YAN Fei, ZHANG Xin-yue, JIN Ying, WANG Jing-yun, CHEN Ping, ZHOU Ming-dong. Oxidation of 5-hydroxylmethylfurfural to 2, 5-furandicarboxylic acid catalyzed by magnetic MnO2-Fe3O4 composite oxides[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 311-320. doi: 10.1016/S1872-5813(21)60020-8
Citation: LU Hong-zhu, BAI Ji-feng, YAN Fei, ZHANG Xin-yue, JIN Ying, WANG Jing-yun, CHEN Ping, ZHOU Ming-dong. Oxidation of 5-hydroxylmethylfurfural to 2, 5-furandicarboxylic acid catalyzed by magnetic MnO2-Fe3O4 composite oxides[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 311-320. doi: 10.1016/S1872-5813(21)60020-8

Oxidation of 5-hydroxylmethylfurfural to 2, 5-furandicarboxylic acid catalyzed by magnetic MnO2-Fe3O4 composite oxides

doi: 10.1016/S1872-5813(21)60020-8
Funds:  The project was supported by Liaoning Revitalization Talents Program (XLYC1902085), Natural Science Foundation of Liaoning Province (20170540590) and PetroChina Innovation Foundation (2018D-5007-0507).
  • Received Date: 2020-11-26
  • Rev Recd Date: 2020-12-18
  • Available Online: 2021-03-19
  • Publish Date: 2021-03-19
  • MnO2 with different crystal structures was used to catalyze the oxidation reaction of 5-hydroxylmethylfurfural (HMF), and α-MnO2 exhibited the highest catalytic activity. Magnetic MnO2-Fe3O4 oxides were prepared by α-MnO2 and Fe3O4 and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), temperature programmed desorption of NH3/CO2 (NH3/CO2-TPD) and Fourier transform infrared reflection spectra of pyridine adsorption (Py-FTIR). The results showed that the composite catalyst still maintained the basic structure of α-MnO2 and Fe3O4, whereas the number of active center Mn4+·O2− ion pair increased compared with α-MnO2 and Fe3O4, which significantly improved the catalytic activity on HMF oxidation reaction. The reaction conditions of HMF oxidation to 2,5-furandicarboxylic acid (FDCA) were optimized. The composite oxide Mn8Fe3Ox showed the best catalytic performance for HMF oxidation. HMF could be completely converted, with 76.9% of FDCA yield under the optimal conditions.
  • loading
  • [1]
    WANG H, ZHU C, LI D, LIU Q, TAN J, WANG C, CAI C, MA L. Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran[J]. Renewable Sustainable Energy Rev,2019,103:227−247. doi: 10.1016/j.rser.2018.12.010
    [2]
    王建刚, 张云云, 王勇, 朱丽伟, 崔洪友, 易维明. 分级有序多孔磺化碳催化果糖转化制5-羟甲基糠醛[J]. 燃料化学学报,2016,44(11):1341−1348. doi: 10.3969/j.issn.0253-2409.2016.11.010

    WANG Jian-gang, ZHANG Yun-yun, WANG Yong, ZHU Li-wei, CUI Hong-you, YI Wei-ming. Catalytic fructose dehydration to 5-hydroxymethylfurfural over sulfonated carbons with hierarchically ordered pores[J]. J Fuel Chem Technol,2016,44(11):1341−1348. doi: 10.3969/j.issn.0253-2409.2016.11.010
    [3]
    KONG X, ZHU Y, FANG Z, KOZINSKI J A, BUTLER I S, XU L, SONG H, WEI X. Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives[J]. Green Chem,2018,20(16):3657−3682. doi: 10.1039/C8GC00234G
    [4]
    KOMPANETS M O, KUSHCH O V, LITVINOV Y E, PLIEKHOV O L, NOVIKOVA K V, NOVOKHATKO A O, SHENDRIK A N, VASILYEV A V, OPEIDA I O. Oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran with molecular oxygen in the presence of N-hydroxyphthalimide[J]. Catal Commun,2014,57:60−63. doi: 10.1016/j.catcom.2014.08.005
    [5]
    陆强, 廖航涛, 张阳, 张俊姣, 董长青. 果糖低温快速热解制备5-羟甲基糠醛的机理研究[J]. 燃料化学学报,2013,41(9):1070−1076. doi: 10.3969/j.issn.0253-2409.2013.09.007

    LU Qiang, LIAO Hang-tao, ZHANG Yang, ZHANG Jun-jiao, DONG Chang-qing. Reaction mechanism of low-temperature fast pyrolysis of fructose to produce 5-hydroxymethyl furfural[J]. J Fuel Chem Technol,2013,41(9):1070−1076. doi: 10.3969/j.issn.0253-2409.2013.09.007
    [6]
    ZHANG Z, DENG K. Recent advances in the catalytic synthesis of 2, 5-furandicarboxylic acid and its derivatives[J]. ACS Catal,2015,5(11):6529−6544. doi: 10.1021/acscatal.5b01491
    [7]
    GAO L, DENG K, ZHENG J, LIU B, ZHANG Z. Efficient oxidation of biomass derived 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid catalyzed by Merrifield resin supported cobalt porphyrin[J]. Chem Eng J,2015,270:444−449. doi: 10.1016/j.cej.2015.02.068
    [8]
    ZUO X, VENKITASUBRAMANIAN P, BUSCH D H, SUBRAMANIAM B. Optimization of Co/Mn/Br-catalyzed oxidation of 5-hydroxymethylfurfural to enhance 2, 5-furandicarboxylic acid yield and minimize substrate burning[J]. ACS Sustainable Chem Eng,2016,4(7):3659−3668. doi: 10.1021/acssuschemeng.6b00174
    [9]
    ZUO X, CHAUDHARI A S, SNAVELY K, NIU F, ZHU H, MARTIN K J, SUBRAMANIAM B. Kinetics of homogeneous 5-hydroxymethylfurfural oxidation to 2, 5-furandicarboxylic acid with Co/Mn/Br catalyst[J]. AIChE J,2017,63(1):162−171. doi: 10.1002/aic.15497
    [10]
    赖金花, 周硕林, 刘凯, 刘贤响, 尹笃林. 5-羟甲基糠醛选择氧化制2, 5-呋喃二甲酸的研究进展[J]. 精细石油化工,2019,36(2):65−72. doi: 10.3969/j.issn.1003-9384.2019.02.015

    LAI Jin-hua, ZHOU Shou-lin, LIN Kai, LIU Xian-xiang, YIN Du-lin. Advances on selective oxidation of 5-hydroxymethylfurfura into 2, 5-furandicarboxylic acid[J]. Spec Petrochem,2019,36(2):65−72. doi: 10.3969/j.issn.1003-9384.2019.02.015
    [11]
    DAVIS S E, HOUK L R, TAMARGO E C, DATYE A K, DAVIS R J. Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts[J]. Catal Today,2011,160(1):55−60. doi: 10.1016/j.cattod.2010.06.004
    [12]
    AIT RASS H, ESSAYEM N, BESSON M. Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over Pt/C catalysts: influence of the base and effect of bismuth promotion[J]. Green Chem,2013,15(8):2240−2251. doi: 10.1039/c3gc40727f
    [13]
    MEI N, LIU B, ZHENG J, LV K, TANG D, ZHANG Z. A novel magnetic palladium catalyst for the mild aerobic oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid in water[J]. Catal Sci Technol,2015,5(6):3194−3202. doi: 10.1039/C4CY01407C
    [14]
    TONG X, YU L, CHEN H, ZHUANG X, LIAO S, CUI H. Highly efficient and selective oxidation of 5-hydroxymethylfurfural by molecular oxygen in the presence of Cu-MnO2 catalyst[J]. Catal Commun,2017,90:91−94. doi: 10.1016/j.catcom.2016.11.024
    [15]
    HAYASHI E, KOMANOYA T, KAMATA K, HARA M. Heterogeneously-catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid with MnO2[J]. ChemSusChem,2017,10(4):654−658. doi: 10.1002/cssc.201601443
    [16]
    HAYASHI E, YAMAGUCHI Y, KAMATA K, TSUNODA N, KUMAGAI Y, OBA F, HARA M. Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid[J]. J Am Chem Soc,2019,141(2):890−900. doi: 10.1021/jacs.8b09917
    [17]
    MA Y, ZHANG T, CHEN L, CHENG H, QI Z. Self-developed fabrication of manganese oxides microtubes with efficient catalytic performance for the selective oxidation of 5-hydroxymethylfurfural[J]. Ind Eng Chem Res,2019,58(29):13122−13132. doi: 10.1021/acs.iecr.9b02650
    [18]
    LIU H, CAO X, WEI J, JIA W, LI M, TANG X, ZENG X, SUN Y, LEI T, LIU S, LIN L. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran over Fe2O3-promoted MnO2 catalyst[J]. ACS Sustainable Chem Eng,2019,7(8):7812−7822. doi: 10.1021/acssuschemeng.9b00010
    [19]
    YANG Z Z, DENG J, PAN T, GUO Q X, FU Y. A one-pot approach for conversion of fructose to 2, 5-diformylfuran by combination of Fe3O4-SBA-SO3H and K-OMS-2[J]. Green Chem,2012,14(11):2986−2989. doi: 10.1039/c2gc35947b
    [20]
    WANG S, LIU B, YUAN Z, ZHANG Z. Aerobic oxidation of 5-hydroxymethylfurfural into furan compounds over Mo-hydroxyapatite-encapsulated magnetic γ-Fe2O3[J]. J Taiwan Inst Chem Eng,2016,58:92−96. doi: 10.1016/j.jtice.2015.06.002
    [21]
    WANG S, ZHANG Z, LIU B. Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid over a recyclable Fe3O4-CoOx magnetite nanocatalyst[J]. ACS Sustainable Chem Eng,2015,3(3):406−412. doi: 10.1021/sc500702q
    [22]
    RAO K T V, ROGERS J L, SOUZANCHI S, DESSBESELL L, RAY M B, XU C C. Inexpensive but highly efficient Co-Mn mixed-oxide catalysts for selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid[J]. ChemSusChem,2018,11(18):3323−3334. doi: 10.1002/cssc.201800989
    [23]
    LI S, SU K, LI Z, CHENG B. Selective oxidation of 5-hydroxymethylfurfural with H2O2 catalyzed by a molybdenum complex[J]. Green Chem,2016,18(7):2122−2128. doi: 10.1039/C5GC01991E
    [24]
    ZHANG Z, LIU B, LV K, SUN J, DENG K. Aerobic oxidation of biomass derived 5-hydroxymethylfurfural into 5-hydroxymethyl-2-furancarboxylic acid catalyzed by a montmorillonite K-10 clay immobilized molybdenum acetylacetonate complex[J]. Green Chem,2014,16(5):2762−2770. doi: 10.1039/c4gc00062e
    [25]
    MARTÍNEZ-VARGAS D X, RIVERA DE LA ROSA J, SANDOVAL-RANGEL L, GUZMÁN-MAR J L, GARZA-NAVARRO M A, LUCIO-ORTIZ C J, DE HARO-DEL RÍO D A. 5-Hydroxymethylfurfural catalytic oxidation under mild conditions by Co (Ⅱ), Fe (Ⅲ) and Cu (Ⅱ) Salen complexes supported on SBA-15: Synthesis, characterization and activity[J]. Appl Catal A: Gen,2017,547:132−145. doi: 10.1016/j.apcata.2017.08.035
    [26]
    SAHA B, GUPTA D, ABU-OMAR M M, MODAK A, BHAUMIK A. Porphyrin-based porous organic polymer-supported iron(Ⅲ) catalyst for efficient aerobic oxidation of 5-hydroxymethyl-furfural into 2, 5-furandicarboxylic acid[J]. J Catal,2013,299:316−320. doi: 10.1016/j.jcat.2012.12.024
    [27]
    ZHANG S, SUN X, ZHENG Z, ZHANG L. Nanoscale center-hollowed hexagon MnCo2O4 spinel catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid[J]. Catal Commun,2018,113:19−22. doi: 10.1016/j.catcom.2018.05.004
    [28]
    WEI Z, XIAO S, CHEN M, LU M, LIU Y. Selective oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran over a Cu-acetonitrile complex[J]. New J Chem,2019,43(20):7600−7605. doi: 10.1039/C9NJ00465C
    [29]
    谈冠希, 迟姚玲, 李双, 易玉峰, 靳广洲. 锰锆复合氧化物CO催化还原NO性能研究[J]. 燃料化学学报, 2019, 47(10): 1258-1264.

    TAN Guan-xi, CHI Yao-ling, LI Shuang, YI Yu-feng, JIN Guang-zhou. Performance of manganese-zirconium composite oxide in the catalytic reduction of NO by CO[J]. J Fuel Chem Technol, 47(10): 1258-1264.
    [30]
    CHEN L, YANG W, GUI Z, SARAVANAMURUGAN S, RⅡSAGER A, CAO W, QI Z. MnOx/P25 with tuned surface structures of anatase-rutile phase for aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran[J]. Catal Today,2019,319:105−112. doi: 10.1016/j.cattod.2018.05.049
    [31]
    HAN X, LI C, LIU X, XIA Q, WANG Y. Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over MnOx-CeO2 composite catalysts[J]. Green Chem,2017,19:996−1004. doi: 10.1039/C6GC03304K
    [32]
    LIU B, ZHANG Z, LV K, DENG K, DUAN H. Efficient aerobic oxidation of biomass-derived 5-hydromethylfurfural to 2,5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide[J]. Appl Catal A: Gen,2014,472:64−71. doi: 10.1016/j.apcata.2013.12.014
    [33]
    NEAŢU F, MARIN R, FLOREA M, PETREA N, PAVEL O, PÂRVULESCU V. Selective oxidation of 5-hydroxymethyl furfural over non-precious metal heterogeneous catalysts[J]. Appl Catal B: Environ,2016,180:751−757. doi: 10.1016/j.apcatb.2015.07.043
    [34]
    GAWADE A B, NAKHATE A V, YADAV G D. Selective synthesis of 2, 5-furandicarboxylic acid by oxidation of 5-hydroxymethylfurfural over MnFe2O4 catalyst[J]. Catal Today,2018,309:119−125. doi: 10.1016/j.cattod.2017.08.061
    [35]
    MISHRA D K, CHO J K, KIM Y J. Facile production of 2,5-diformylfuran from base-free oxidation of 5-hydroxymethyl furfural over manganese-cobalt spinels supported ruthenium nanoparticles[J]. J Ind Eng Chem,2018,60:513−519. doi: 10.1016/j.jiec.2017.11.040
    [36]
    CASANOVA O, IBORRA S, CORMA A. Biomass into chemicals: Aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts[J]. ChemSusChem,2009,2:1138−1144. doi: 10.1002/cssc.200900137
    [37]
    SIYO B, SCHNEIDER M, RADNIK J, POHL M M, LANGER P, STEINFELDT N. Influence of support on the aerobic oxidation of HMF into FDCA over preformed Pd nanoparticle based materials[J]. Appl Catal A: Gen,2014,478:107−116. doi: 10.1016/j.apcata.2014.03.020
    [38]
    KERDI F, RASS H A, PINEL C, BESSON M, PERU G, LEGER B, RIO S, MONFLIER E, PONCHEL A. Evaluation of surface properties and pore structure of carbon on the activity of supported Ru catalysts in the aqueous-phase aerobic oxidation of HMF to FDCA[J]. Appl Catal A: Gen,2015,506:206−219. doi: 10.1016/j.apcata.2015.09.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (584) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return