Volume 49 Issue 5
May  2021
Turn off MathJax
Article Contents
ZHOU Qi, ZHANG Xu, WANG Yan, QU Si-jian, ZHANG Yang, BAI Xiao-yan, PEI Xian-feng. Pyrolysis behavior of coal in a moving bed with baffled internals under different residence times[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 703-711. doi: 10.1016/S1872-5813(21)60043-9
Citation: ZHOU Qi, ZHANG Xu, WANG Yan, QU Si-jian, ZHANG Yang, BAI Xiao-yan, PEI Xian-feng. Pyrolysis behavior of coal in a moving bed with baffled internals under different residence times[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 703-711. doi: 10.1016/S1872-5813(21)60043-9

Pyrolysis behavior of coal in a moving bed with baffled internals under different residence times

doi: 10.1016/S1872-5813(21)60043-9
Funds:  The project was supported by the National Key Research and Development Program of China (2016YFB0600304)
  • Received Date: 2021-01-06
  • Rev Recd Date: 2021-02-04
  • Available Online: 2021-03-30
  • Publish Date: 2021-05-28
  • In view of the problems faced by the conventional moving bed coal pyrolysis process, such as the inability to deal with pulverized coal, low light tar yield, poor tar quality, etc., a moving bed pyrolysis process with baffled internals was developed to control the heat and mass transfer of the gas-solid two-phase and the pyrolysis reaction process. The multi-stage gas gathering system can collect the oil and gas products released in different pyrolysis stages of coal in time. The pyrolysis behavior and product quality of Naomaohu coal at different temperatures and residence times were investigated. The results show that the baffle internals enhance the heat and volatile matter transfer between particles, enabling it to process 0.4−6.0 mm pulverized coal. When the pyrolysis temperature is 550 ℃ and the residence time is 3 h, the pyrolysis tar yield reaches the highest 11.38%, which is 86.87% of the Gray-King assay yield, and the mass fraction of light components below 360 ℃ in the tar fraction is 85.0%. With the extension of the residence time, the H2 volume fraction in the pyrolysis gas increases from 22.1% to 35.1%, and the CO volume fraction increases from 8.0% to 9.5%. The tar yield in the first and second layer reactors increases with the extension of the residence time, and the maximum tar yield in the third and fourth layer reactors is obtained when the residence time is 2 h. As the number of beds increases, the content of light components in the tar simulated distillation fraction increases, the content of tar aliphatic hydrocarbon compounds decreases, and the content of monocyclic aromatic hydrocarbons and bicyclic aromatic hydrocarbons gradually increases. Based on the above research, it provides technical support for large-scale industrial processing of small particle size pulverized coal, and preparation of higher yield and quality tar.
  • loading
  • [1]
    WU Z Q, MA C., JIANG Z, LUO Z Y. Structure evolution and gasification characteristic analysis on co-pyrolysis char from lignocellulosic biomass and two ranks of coal: Effect of wheat straw[J]. Fuel,2019,239:180−190. doi: 10.1016/j.fuel.2018.11.015
    [2]
    ZHAO H Y, LI Y H, SONG Q, LIU S C, YAN J, MA Q X, MA L, SHU X Q. Investigation on the thermal behavior characteristics and products composition of four pulverized coals: its potential applications in coal cleaning[J]. Int J Hydrogen Energy,2019,44(42):23620−23638. doi: 10.1016/j.ijhydene.2019.07.087
    [3]
    REN X Y, CAO J P, ZHAO X Y, YANG Z, LIU T L, FAN X, ZHAO Y P, WEI X Y. Catalytic upgrading of pyrolysis vapors from lignite over mono/bimetal loaded mesoporous HZSM-5[J]. Fuel,2018,218:33−40. doi: 10.1016/j.fuel.2018.01.017
    [4]
    LIU Z Y, GUO X J, SHI L, HE W J, WU J F, LIU Q Y, LIU J H. Reaction of volatiles–A crucial step in pyrolysis of coals[J]. Fuel, 2015, 154: 361−369.
    [5]
    ZHOU J, WU L, ZHOU J J, LIANG K, SONG Y H, TIAN Y H, ZHANG Q L, LAN X Z. Products optimization by FeS2 catalyst for low-rank coal microwave pyrolysis[J]. Fuel,2019,255:115759. doi: 10.1016/j.fuel.2019.115759
    [6]
    CHEN Z H, SHI Y, LAI D G, GAO S Q, SHI Z, TIAN Y, XU G W. Coal rapid pyrolysis in a transport bed under steam-containing syngas atmosphere relevant to the integrated fluidized bed gasification[J]. Fuel,2016,176:200−208. doi: 10.1016/j.fuel.2016.02.082
    [7]
    LI Q S, LIN Y K. Exergy analysis of the LFC process[J]. Energy Convers Manag,2016,108:348−354. doi: 10.1016/j.enconman.2015.11.024
    [8]
    CORTEZ D H. Co-production of syncrude and power using the toscoal process[J]. J Jpn Petrol Inst,1982,4:3−19.
    [9]
    RAMMLER R W. The production of synthetic crude oil from oil sand by application of the Lurgi-Ruhrgas process[J]. Can J Chem Eng,1970,48:552−560. doi: 10.1002/cjce.5450480513
    [10]
    ZHOU Q, ZOU T, ZHONG M, ZHANG Y M, WU R C, GAO S Q, XU G W. Lignite upgrading by multi-stage fluidized bed pyrolysis[J]. Fuel Process Technol,2013,116:35−43. doi: 10.1016/j.fuproc.2013.04.022
    [11]
    ZHANG C, WU R C, XU G W. Coal pyrolysis for high-quality tar in a fixed-bed pyrolyzer enhanced with internals[J]. Energy Fuels,2014,28(1):236−244. doi: 10.1021/ef401546n
    [12]
    QU X, LIANG P, WANG Z F, ZHANG R. Pilot development of polygeneration process of circulating fluidized bed combustion combined with coal pyrolysis[J]. Chem Eng Technol,2011,34:61−68.
    [13]
    CHEN Z H, LI Y J, LAI D G, GENG S L, ZHOU Q, GAO S Q, XU G W. Coupling coal pyrolysis with char gasification in a multi-stage fluidized bed to co-produce high-quality tar and syngas[J]. Appl Energy,2018,215:348−355. doi: 10.1016/j.apenergy.2018.02.023
    [14]
    周琦. 低阶煤提质技术现状及完善途径[J]. 洁净煤技术,2016,22(2):23−30.

    ZHOU Qi. Status and improvement approach of low rank coal upgrading technologies[J]. Clean Coal Technol,2016,22(2):23−30.
    [15]
    白效言, 裴贤丰, 张飏, 周琦, 王岩, 王之正. 小粒径低阶煤热解油尘分离问题分析[J]. 煤质技术,2015,30(6):1−4. doi: 10.3969/j.issn.1007-7677.2015.06.001

    BAI Xiao-yan, PEI Xian-feng, ZHANG Yang, ZHOU Qi, WANG Yan, WANG Zhi-zheng. Analysis on separation of tar and dust during pyrolysis of small-size low rank coal[J]. Coal Quality Technol,2015,30(6):1−4. doi: 10.3969/j.issn.1007-7677.2015.06.001
    [16]
    HAN J Z, LIU X X, YUE J R, XI B F, GAO S Q, XU G W. Catalytic upgrading of in situ coal pyrolysis tar over Ni-char catalyst with different additives[J]. Energy Fuels,2014,28(8):4934−4941. doi: 10.1021/ef500927d
    [17]
    FURIMSKY E, VANCEA L, BELANGER R. Effect of coal rank on structure of tars from low-temperature pyrolysis of Canadian coals[J]. Ind Eng Chem Prod Res Dev,1984,23(1):134−140. doi: 10.1021/i300013a027
    [18]
    ZHU W K, SONG W L, LIN W G. Effect of the coal particle size on pyrolysis and char reactivity for two types of coal and demineralized coal[J]. Energy Fuels,2008,22(4):2482−2487. doi: 10.1021/ef800143h
    [19]
    CUI L J, LIN W G, YAO J Z. Influences of temperature and coal particle size on the flash pyrolysis of coal in a fast-entrained bed[J]. Chem Res Chin Univ,2006,22(1):103−110. doi: 10.1016/S1005-9040(06)60056-1
    [20]
    VALDÉS C F, CHEJNE F. Effect of reaction atmosphere on the products of slow pyrolysis of coals[J]. J Anal Appl Pyrolysis,2017,126:105−117. doi: 10.1016/j.jaap.2017.06.019
    [21]
    GUEDEA I, PALLARÈS D, DÍEZ L I, JOHNSSON F. Conversion of large coal particles under O2/N2 and O2/CO2 atmospheres—Experiments and modeling[J]. Fuel Process Technol,2013,112:118−128. doi: 10.1016/j.fuproc.2013.02.023
    [22]
    JIANG Y, ZONG P J, TIAN B, XU F F, TIAN Y Y, QIAO Y Y, ZHANG J H. Pyrolysis behaviors and product distribution of Shenmu coal at high heating rate: A study using TG-FTIR and Py-GC/MS[J]. Energy Convers Manag,2019,179:72−80. doi: 10.1016/j.enconman.2018.10.049
    [23]
    ZHANG X Y, ZHOU B X, AN D H, CUI L, ZHENG Y, DONG Y. Effect of heating rate on pyrolysis characteristics and char structure of Zhundong lignite coal[J]. J China Coal Soc,2019,44(2):604−610.
    [24]
    SUELVES I, MOLINER R, LÁZARO M J. Synergetic effects in the co-pyrolysis of coal and petroleum residues: influences of coal mineral matter and petroleum residue mass ratio[J]. J Anal Appl Pyrolysis,2000,55(1):29−41. doi: 10.1016/S0165-2370(99)00072-8
    [25]
    ELLIS N, MASNADI M S, ROBERTS D G, KOCHANEK M A, LLYUSHECHKIN A Y. Mineral matter interactions during co-pyrolysis of coal and biomass and their impact on intrinsic char co-gasification reactivity[J]. Chem Eng J,2015,279:402−408. doi: 10.1016/j.cej.2015.05.057
    [26]
    钟梅, 赵渊, 李显, 马凤云. K+、Ca2+和Fe3+对和丰煤热解产物分布、结构及品质的影响[J]. 燃料化学学报,2018,46(9):1044−1054. doi: 10.3969/j.issn.0253-2409.2018.09.003

    ZHONG Mei, ZHAO Yuan, LI Xian, MA Feng-yun. Effects of K+, Ca2+ and Fe3+ on the distribution, structure and quality of the pyrolysis products of Hefeng coal[J]. J Fuel Chem Technol,2018,46(9):1044−1054. doi: 10.3969/j.issn.0253-2409.2018.09.003
    [27]
    WANG D M, CHEN Z H, LI C M, WANG D L, LI Y J, YANG H, LIU Z E, YU J, GAO S Q. High-quality tar production from coal in an integrated reactor: Rapid pyrolysis in a drop tube and downstream volatiles upgrading over char in a moving bed[J]. Fuel,2021,285:119156. doi: 10.1016/j.fuel.2020.119156
    [28]
    王立坤. 国富炉低阶煤热解技术在兰炭行业的市场竞争力[J]. 煤炭加工与综合利用,2020,246(1):53−56+4.

    WANG Li-kun. Market competitiveness of CGPS of Kunitomi furnace in semi coke industry[J]. Coal Process Comp Util,2020,246(1):53−56+4.
    [29]
    崔童敏, 李超, 周志杰, 常清华, 高瑞, 于广锁, 王福臣. 神府烟煤快速热解特性研究[J]. 燃料化学学报,2015,43(11):1287−1294. doi: 10.3969/j.issn.0253-2409.2015.11.002

    CUI Tong-min, LI Chao, ZHOU Zhi-jie, CHANG Qing-hua, GAO Rui, YU Guang-suo, WANG Fu-chen. Rapid pyrolysis characteristic of Shenfu bituminous coal[J]. J Fuel Chem Technol,2015,43(11):1287−1294. doi: 10.3969/j.issn.0253-2409.2015.11.002
    [30]
    张俊杰, 徐绍平, 王光永, 杨怀天. 停留时间对低阶煤快速热解产物分布、组成及结构的影响[J]. 化工进展,2019,38(3):1346−1352.

    ZHANG Jun-jie, XU Shao-ping, WANG Guang-yong, YANG Huai-tian. Effect of residence time on distribution, composition and structure of products derived from fast coal pyrolysis[J]. Chem Ind Eng Prog,2019,38(3):1346−1352.
    [31]
    周琦, 白立强, 陈兆辉, 高士秋, 许光文. 复合流化床低阶煤热解制备兰炭的工艺条件[J]. 过程工程学报,2019,38(3):1346−1352.

    ZHOU Qi, BAI Li-qiang, CHEN Zhao-hui, GAO Shi-qiu, XU Guang-wen. Preparation conditions of semi-coke via pyrolysis of low-rank coal in an integrated fluidization bed[J]. Chin J Process Eng,2019,38(3):1346−1352.
    [32]
    CUI L J, SONG W L, ZHANG J Y, YAO J Z, LIN W G. Influence of the gas and particle residence time on fast pyrolysis of lignite[J]. J Energy Resour Technol,2007,129(2):152−158. doi: 10.1115/1.2719208
    [33]
    REICHEL D, SIEGL S, NEUBERT C, KRZACK S. Determination of pyrolysis behavior of brown coal in a pressurized drop tube reactor[J]. Fuel,2015,158:983−998. doi: 10.1016/j.fuel.2015.04.066
    [34]
    敦启孟, 陈兆辉, 皇甫林, 周杨, 余剑, 高士秋, 刘鸿雁. 温度和停留时间对煤热解挥发分二次反应的影响[J]. 过程工程学报,2018,18(1):140−147. doi: 10.12034/j.issn.1009-606X.217192

    DUN Qi-meng, CHEN Zhao-hui, HUANG Fu-lin, ZHOU Yang, YU Jian, GAO Shi-qiu, LIU Hong-yan. Influences of temperature and residence time on secondary reactions of volatiles from coal pyrolysis[J]. Chin J Process Eng,2018,18(1):140−147. doi: 10.12034/j.issn.1009-606X.217192
    [35]
    刘振宇. 煤快速热解制油技术问题的化学反应工程根源: 逆向传热与传质[J]. 化工学报,2016,67(1):1−5.

    LIU Zhen-yu. Origin of common problems in fast coal pyrolysis technologies for tar: The countercurrent flow of heat and volatiles[J]. CIESC J,2016,67(1):1−5.
    [36]
    霍朝飞. 螺旋反应器中颗粒混合及煤热解特性研究[D]. 北京: 中国科学院研究生院, 2015.

    HUO Chao-fei. Mixing of particles and coal pyrolysis behaviors in screw reactors[D]. Beijing: UCAS, 2015.
    [37]
    周琦. 折流内构件移动床新疆淖毛湖煤热解实验研究[J/OL]. 煤炭学报, 2021.DOI: 10.13225/j.cnki.jccs.2020.0603.

    ZHOU Qi. Experimental study on the pyrolysis of Xinjiang Naomaohu coal in a moving bed with baffled internals[J/OL]. J China Coal Soc, 2021.DOI: 10.13225/j.cnki.jccs.2020.0603.
    [38]
    ZHU J L, JIN L J, LUO Y W, HU H Q, XIONG Y K, WEI B Y, WANG D C. Fast co-pyrolysis of a massive Naomaohu coal and cedar mixture using rapid infrared heating[J]. Energy Convers Manag,2020,205:112442. doi: 10.1016/j.enconman.2019.112442
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (293) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return