Volume 49 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
LU Jing-lin, WANG Sheng, ZHAO Kun, WANG Ting, NI Chang-jun, WANG Ming-zhe, WANG Shu-dong. Study on catalytic performance of supported transition metal oxide catalyst for ozone decomposition[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 1014-1021. doi: 10.1016/S1872-5813(21)60044-0
Citation: LU Jing-lin, WANG Sheng, ZHAO Kun, WANG Ting, NI Chang-jun, WANG Ming-zhe, WANG Shu-dong. Study on catalytic performance of supported transition metal oxide catalyst for ozone decomposition[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 1014-1021. doi: 10.1016/S1872-5813(21)60044-0

Study on catalytic performance of supported transition metal oxide catalyst for ozone decomposition

doi: 10.1016/S1872-5813(21)60044-0
Funds:  The project was supported by the National Natural Science Foundation of China (U20A20132), the National Key Research and Development Plan (2016YFC0204302) and the Innovation Research Fund Project of Dalian Institute of Physics (DICPI201937)
  • Received Date: 2020-12-18
  • Rev Recd Date: 2021-01-29
  • Available Online: 2021-03-30
  • Publish Date: 2021-07-15
  • In this paper, γ-Al2O3 supported nickel, manganese, cobalt, and other metal oxide catalysts were prepared by the impregnation method respectively, and its ozone catalytic decomposition performance was studied at 25 ℃ under a WHSV of 200000 mL/(gcat·h). The results showed that 10% NiO/γ-Al2O3 catalyst demonstrates superior catalytic activity, and the ozone conversion rate is higher than 96% within 20 h. According to the characterizations of XRD, XPS, TEM, SEM-EDS and H2-TPR, its excellent ozone may be attributed to the formation of NiAl2O4 spinel on the surface of NiO/γ-Al2O3 catalyst. Furthermore, the mechanism of ozone decomposition on different transition metal oxide catalysts is divergent. The related study sheds new light on the reaction mechanism of ozone catalytic decomposition over transition metal oxides such as nickel and manganese, it also provides the guidelines for the development of efficient ozone decomposition catalysts.
  • loading
  • [1]
    BERNSTEIN J A, ALEXIS N, BACCHUS H. The health effects of nonindustrial indoor air pollution[J]. J Allergy Clin, Immunol,2008,121:585−591. doi: 10.1016/j.jaci.2007.10.045
    [2]
    BERNSTEIN J A, ALEXIS N, BARNES C. Health effects of air pollution[J]. J Allergy Clin, Immunol,2004,114:1116−1123. doi: 10.1016/j.jaci.2004.08.030
    [3]
    ATKINSON R. Atmospheric chemistiy of VOCs and NOx[J]. Atmos Environ,2000,34:2063−2101. doi: 10.1016/S1352-2310(99)00460-4
    [4]
    SAAKE B, LEHNEN R, SCHMEKAL E. Bleaching of formacell pulp from aspen wood with ozone and preacetic acid in organic solvents[J]. Holzforschung,1998,52:643−650. doi: 10.1515/hfsg.1998.52.6.643
    [5]
    CAMEL V, BERMOND A. The use of ozone processes in drinking water treatment[J]. Wat Res,1998,32:3208−3222. doi: 10.1016/S0043-1354(98)00130-4
    [6]
    ZEYNEP B, ANNEL K G, SEYDIM A C. Use of ozone in the food industry[J]. Lwt-Food Sci Technol,2004,37:453−460. doi: 10.1016/j.lwt.2003.10.014
    [7]
    CHANG L T, HONG G B, WENG S P. Indoor ozone levels, houseplants and peak expiratory flow rates among healthy adults in Taipei, Taiwan[J]. Environ Int,2019,122:231−236. doi: 10.1016/j.envint.2018.11.010
    [8]
    WESCHLER C J. Chemistry in indoor environments: 20 years of research[J]. Indoor Air,2011,3:205−218.
    [9]
    WESCHLER C J. Ozone in indoor environments: Concentration and chemistry[J]. Indoor Air,2000,10:269−288. doi: 10.1034/j.1600-0668.2000.010004269.x
    [10]
    谢甫钦柯 M A. 臭氧化法水处理工艺学[M]. 北京: 清华大学出版社, 1987.

    CHEVCHENKO M A. Ozonation Water Treatment Technology [M]. Beijing: Tsinghua University Press, 1987.
    [11]
    AXWORTHY A E, BENSON S W. Mechanism of gas phase decomposition of ozone. Thermal and photochemical reactions[J]. Ozone Chem Technol,1959,21:388−397.
    [12]
    WANG Y, ARANDIYAN H, SCOTT J. Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: A review[J]. J Mater Chem A,2017,19:8825−8846.
    [13]
    CAO S, TAO F F, TANG Y. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts[J]. Chem Soc Rev,2016,17:4747−65.
    [14]
    CHEN Z, JIAO Z, PAN D. Recent advances in manganese oxide nanocrystals: Fabrication, characterization, and microstructure[J]. Chem Rev,2012,7:3833−55.
    [15]
    SHI J. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts[J]. Chem Rev,2013,3:2139−2181.
    [16]
    STOERZINGER K A, RISCH M, HAN B. Recent insights into manganese oxides in catalyzing oxygen reduction kinetics[J]. ACS Catal,2015,10:6021−6031.
    [17]
    TANG W, LIU G, LI D. Design and synthesis of porous non-noble metal oxides for catalytic removal of VOCs[J]. Sci Sin Chim,2015,9:1359−1366.
    [18]
    YU Q W, PAN H, ZHAO M, LIU Z M, WANG J L, CHEN Y Q, GONG M C. Influence of calcination temperature on the performance of Pd-Mn/SiO2-Al2O3 catalysts for ozone decomposition[J]. J Hazard Mater,2009,172:631−634. doi: 10.1016/j.jhazmat.2009.07.040
    [19]
    DHANDAPANI, RAGHAVAN S. Probabilistic and topological methods in computational geometry[D]. New York: New York University, 2010.
    [20]
    IMAMURA S, IKEBATA M, ITO T. Decomposition of ozone on a silver catalyst[J]. Ind Eng Chem Res,1991,30(1):217−221. doi: 10.1021/ie00049a033
    [21]
    RADHAKRISHNAN R, OYAMA S T. Electron transfer effects in ozone decomposition on supported manganese oxide[J]. J Phys Chem B,2001,105(19):4245−4253. doi: 10.1021/jp003246z
    [22]
    GONG S Y, CHEN J Y, WU X F. In-situ synthesis of Cu2O/reduced graphene oxide composite as effective catalyst for ozone decomposition[J]. Catal Commun,2018,106:25−29. doi: 10.1016/j.catcom.2017.12.003
    [23]
    RADHAKRISHNAN R, OYAMA S T. Ozone decomposition over manganese oxide supported on ZrO2 and TiO2: A kinetic study using in situ laser raman spectroscopy[J]. J Catal,2001,199(2):282−290. doi: 10.1006/jcat.2001.3167
    [24]
    DAN C, POPOVICI E J, IMRE F, INDREA E, MARGINEAN P, SILAGHI-DUMITRESCU I. Studies on some ozone decomposition catalysts based on nickel oxide[J]. Stud Univ Babes-Bolyai Chem,2007,52(1):91−95.
    [25]
    CAO R R, ZHANG P Y, LIU Y. Ammonium-treated birnessite-type MnO2 to increase oxygen vacancies and surface acidity for stably decomposing ozone in humid condition[J]. Appl Surf Sci,2019,495:143607. doi: 10.1016/j.apsusc.2019.143607
    [26]
    MARZIEHOSSADAT S Y, OMMOLBANIN A S, MUSTAPHA A, MARIA C. A novel synthesis of NiAl2O4 spinel from a Ni-Al mixed-metal alkoxide as a highly effcient catalyst for hydrogen production by glycero lsteam reforming[J]. Appl Catal B: Environ,2020,265:118535. doi: 10.1016/j.apcatb.2019.118535
    [27]
    YANG Y J. The effffect of tungsten doping on the catalytic activity of α-MnO2 nanomaterial for ozone decomposition under humid condition[J]. Appl Catal A: Gen,2018,562:132−141. doi: 10.1016/j.apcata.2018.06.006
    [28]
    ZHANG G F. Facile fabrication of Al2O3-doped Co3O4/graphene nanocomposites for high performance asymmetric supercapacitors[J]. Appl Surf Sci,2019,493:55−62. doi: 10.1016/j.apsusc.2019.06.288
    [29]
    PETZOLD F G, JASINSKI J, CLARK E L, KIM J H, ABSHER J, TOUFAR H, SUNKARA M K. Nickel supported on zinc oxide nanowires as advanced hydrodesulfurization catalysts[J]. Catal Today,2012,198(1):219−227. doi: 10.1016/j.cattod.2012.05.030
    [30]
    GOICOECHEA S, KRALEVA E, SOKOLOV S, SCHNEIDER M, POHI M M, KOCKMANN N, EHRICH H. Support effect on structure and performance of Co and Ni catalysts for steam reforming of acetic acid[J]. Appl Catal A: Gen,2016,514:182−191. doi: 10.1016/j.apcata.2015.12.025
    [31]
    MISHRA T, MOHAPATRA P, PARIDA K M. Characterisation and catalytic evaluation of iron–manganese mixed oxide pillared clay for VOC decomposition reaction[J]. Appl Catal B: Environ,2008,79(3):279−285. doi: 10.1016/j.apcatb.2007.10.030
    [32]
    ANDRÉ V H S. Palladium and nickel supported on Fe3O4 as catalysts for glycerol aqueous-phase hydrogenolysis and reforming[J]. Appl Phys A,2017,548:179−190.
    [33]
    FEDOROV A V, KUKUSHKIN R G, YELETSKY P M, BULAVCHENKO O A, YAKOVLEV V A. Temperature-programmed reduction of model CuO, NiO and mixed CuO-NiO catalysts with hydrogen[J]. J. Alloys Compd,2020,844:156135. doi: 10.1016/j.jallcom.2020.156135
    [34]
    CHEN J, CHEN X, CHEN X. Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs[J]. Appl Catal B: Environ,2018,224:825−835. doi: 10.1016/j.apcatb.2017.11.036
    [35]
    JIA J B, ZHANG P Y, CHEN L. The effect of morphology of α-MnO2 on catalytic decomposition of gaseous ozone[J]. Catal Sci Technol,2016,15(6):5841.
    [36]
    GAO Y, WANG S, LV L R, LI D Y, YUE X, WANG S D. Insights into the behaviors of the catalytic combustion of propane over spinel catalysts[J]. Catal Lett,2020,150:3617−3625. doi: 10.1007/s10562-020-03239-3
    [37]
    ERTL G, HIERL R, KNÖZINGER H, THIELE N, URBACH H P. XPS study of copper aluminate catalysts[J]. Appl Sci,1980,5(1):49−64.
    [38]
    KASZTELAN S, GRIMBLOT J, BONNELLE J P, PAYEN E, TOULHOAT H, JACQUIN Y. Preparation of Co-Mo-γ-Al2O3 and Ni-Mo-γ-Al2O3 catalysts by phregulation of molybdenum solution. characterization of supported species and hydrogenation activities[J]. Appl Catal,1983,7(1):91−112. doi: 10.1016/0166-9834(83)80241-3
    [39]
    ANSELL R O, DICKINSON T, POVEY A F. An X-ray photo-electron spectroscopic study of the films on coloured stainless steel and coloured ‘Nilomag’ alloy 771[J]. Corros Sci,1978,18(3):245−256. doi: 10.1016/S0010-938X(78)80021-3
    [40]
    CARVER J C, SCHWEITZER G K. Use of X-ray photoelectron spectroscopy to study bonding in Cr, Mn, Fe, and Co compounds[J]. J Chem Phys,1972,57:973. doi: 10.1063/1.1678348
    [41]
    MCINTYRE N S, JOHNSTON D D, COATSWORTH L L, DAVIDSON R D, BROWN J R. X-ray photoelectron spectroscopic studies of thin film oxides of cobalt and molybdenum[J]. J Chem Phys,1990,15(4):265−272.
    [42]
    OKAMOTO Y, IMANAKA T, TERANISHI S. Surface structure of CoO-MoO3-Al2O3 catalysts studied by X-ray photoelectron spectroscopy[J]. J Catal,1980,65(2):448−460. doi: 10.1016/0021-9517(80)90322-X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (560) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return