Volume 49 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
LI Yu-feng, YANG Peng-ju, JIANG Feng, LIU Bing, XU Yue-bing, LIU Xiao-hao. Effect of potassium on GO-modified large Fe3O4 microspheres for the production of α-olefins[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 933-944. doi: 10.1016/S1872-5813(21)60063-4
Citation: LI Yu-feng, YANG Peng-ju, JIANG Feng, LIU Bing, XU Yue-bing, LIU Xiao-hao. Effect of potassium on GO-modified large Fe3O4 microspheres for the production of α-olefins[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 933-944. doi: 10.1016/S1872-5813(21)60063-4

Effect of potassium on GO-modified large Fe3O4 microspheres for the production of α-olefins

doi: 10.1016/S1872-5813(21)60063-4
  • Received Date: 2020-12-28
  • Rev Recd Date: 2021-02-28
  • Available Online: 2021-03-18
  • Publish Date: 2021-07-15
  • Despite that iron-based catalysts are preferred for the high selectivity to value-added α-olefins via Fischer-Tropsch synthesis (FTS) reaction, the carbon deposition leads to deactivate catalyst more readily and CO2 selectivity as high as ~50% leads to low carbon efficiency. Herein, we developed an innovative approach to fabricate iron-based catalysts to deal with this issue. In detail, Fe3O4 microspheres with an average particle size of ~580 nm were prepared via hydrothermal method and mixed with GO. The GO modification can effectively inhibit the sintering and coking of the large Fe3O4 microspheres (580 nm) by assisting its evolution into much smaller iron carbide nanocapsules (~9.1 nm). The obtained catalyst exhibits excellent reaction activity, stability and high α-olefin selectivity. The addition of K into Fe3O4 microsphere produces major ε′-Fe2.2C about 58.9% in the evolution process and facilitates lower CO2 emission obviously.
  • loading
  • [1]
    CHHEDA J N, HUBER G W, DUMESIC J A. Katalytische flüssigphasenumwandlung oxygenierter kohlenwasserstoffe aus biomasse zu treibstoffen und rohstoffen für die chemiewirtschaft[J]. Angew Chem,2007,119:7298−7318. doi: 10.1002/ange.200604274
    [2]
    DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev,2008,37:2758−2781. doi: 10.1039/b805427d
    [3]
    FISCHER F, TROPSCH H. Die erdölsynthese bei gewöhnlichem druck aus den vergasungsprodukten der kohlen[J]. Brennst Chem,1926,7:97−104.
    [4]
    KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Rev,2007,107:1692−1744. doi: 10.1021/cr050972v
    [5]
    ZHANG Q, KANG J, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis: tuning the product selectivity[J]. ChemCatChem,2010,2:1030−1058. doi: 10.1002/cctc.201000071
    [6]
    PUGA A V. On the nature of active phases and sites in CO and CO2 hydrogenation catalysts[J]. Catal Sci Technol,2018,8:5681−5707. doi: 10.1039/C8CY01216D
    [7]
    PENG X, CHENG K, KANG J, GU B, YU X, ZHANG Q, WANG Y. Impact of hydrogenolysis on the selectivity of the Fischer-Tropsch synthesis: Diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles[J]. Angew Chem Int Ed,2015,54:4553−4556. doi: 10.1002/anie.201411708
    [8]
    GENG S, JIANG F, XU Y, LIU X. Iron-based Fischer-Tropsch synthesis for the efficient conversion of carbon dioxide into Isoparaffins[J]. ChemCatChem,2016,8:1303−1307. doi: 10.1002/cctc.201600058
    [9]
    YANG C, ZHAO B, GAO R, YAO S, ZHAI P, LI S, YU J, HOU Y, MA D. Construction of synergistic Fe5C2/Co heterostructured nanoparticles as an enhanced low temperature Fischer-Tropsch synthesis catalyst[J]. ACS Catal,2017,7:5661−5667. doi: 10.1021/acscatal.7b01142
    [10]
    ZHENG J, CAI J, JIANG F, XU Y, LIU X. Investigation of the highly tunable selectivity to linear α-olefins in Fischer-Tropsch synthesis over silica-supported Co and CoMn catalysts by carburization-reduction pretreatment[J]. Catal Sci Technol,2017,7:4736−4755. doi: 10.1039/C7CY01764B
    [11]
    CHENG Q, TIAN Y, LYU S, ZHAO N, MA K, DING T, JIANG Z, WANG L, ZHANG J, ZHENG L. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis[J]. Nat Commun,2018,9:1−9. doi: 10.1038/s41467-017-02088-w
    [12]
    LI J, HE Y, TAN L, ZHANG P, PENG X, ORUGANTI A, YANG G, ABE H, WANG Y, TSUBAKI N. Integrated tuneable synthesis of liquid fuels via Fischer-Tropsch technology[J]. Nat Catal,2018,1:787−793. doi: 10.1038/s41929-018-0144-z
    [13]
    JIANG F, LIU B, GENG S, XU Y, LIU X. Hydrogenation of CO2 into hydrocarbons: Enhanced catalytic activity over Fe-based Fischer-Tropsch catalysts[J]. Catal Sci Technol,2018,8:4097−4107. doi: 10.1039/C8CY00850G
    [14]
    LIU B, LI W, XU Y, LIN Q, JIANG F, LIU X. Insight into the intrinsic active site for selective production of light olefins in cobalt-catalyzed Fischer-Tropsch synthesis[J]. ACS Catal,2019,9:7073−7089. doi: 10.1021/acscatal.9b00352
    [15]
    WANG T, XU Y, SHI C, JIANG F, LIU B, LIU X. Direct production of aromatics from syngas over a hybrid FeMn Fischer-Tropsch catalyst and HZSM-5 zeolite: Local environment effect and mechanism-directed tuning of the aromatic selectivity[J]. Catal Sci Technol,2019,9:3933−3946. doi: 10.1039/C9CY00750D
    [16]
    LIU X, LINGHU W, LI X, ASAMI K, FUJIMOTO K. Effects of solvent on Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2006,303:251−257. doi: 10.1016/j.apcata.2006.02.009
    [17]
    GALVIS H M T, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A I, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science,2012,335:835−838. doi: 10.1126/science.1215614
    [18]
    LU J, YANG L, XU B, WU Q, ZHANG D, YUAN S, ZHAI Y, WANG X, FAN Y, HU Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catal,2014,4:613−621. doi: 10.1021/cs400931z
    [19]
    CHENG Y, LIN J, XU K, WANG H, YAO X, PEI Y, YAN S, QIAO M, ZONG B. Fischer-Tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide supported iron catalysts[J]. ACS Catal,2016,6:389−399. doi: 10.1021/acscatal.5b02024
    [20]
    ZHAI P, XU C, GAO R, LIU X, LI M, LI W, FU X, JIA C, XIE J, ZHAO M. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium‐modulated Fe5C2 catalyst[J]. Angew Chem Int Ed,2016,128:10056−10061. doi: 10.1002/ange.201603556
    [21]
    CHENG Y, LIN J, WU T, WANG H, XIE S, PEI Y, YAN S, QIAO M, ZONG B. Mg and K dual-decorated Fe-on-reduced graphene oxide for selective catalyzing CO hydrogenation to light olefins with mitigated CO2 emission and enhanced activity[J]. Appl Catal B: Environ,2017,204:475−485. doi: 10.1016/j.apcatb.2016.11.058
    [22]
    LIU B, GENG S, ZHENG J, JIA X, JIANG F, LIU X. Unravelling the new roles of Na and Mn promoter in CO2 hydrogenation over Fe3O4-Based catalysts for enhanced selectivity to light α-olefins[J]. ChemCatChem,2018,10:4718−4732. doi: 10.1002/cctc.201800782
    [23]
    CAI J, JIANG F, LIU X. Exploring pretreatment effects in Co/SiO2 Fischer-Tropsch catalysts: Different oxidizing gases applied to oxidation-reduction process[J]. Appl Catal B: Environ,2017,210:1−13. doi: 10.1016/j.apcatb.2017.03.036
    [24]
    JIANG F, ZHANG M, LIU B, XU Y, LIU X. Insights into the influence of support and potassium or sulfur promoter on iron-based Fischer-Tropsch synthesis: Understanding the control of catalytic activity, selectivity to lower olefins, and catalyst deactivation[J]. Catal Sci Technol,2017,7:1245−1265. doi: 10.1039/C7CY00048K
    [25]
    ZHANG X, LIN Q, LIU B, ZHENG J, JIANG F, XU Y, LIU X. Unravelling the structure-performance relationship over iron-based Fischer-Tropsch synthesis by depositing the iron carbonyl in syngas on SiO2 in a fixed-bed reactor[J]. Appl Catal A: Gen,2019,572:197−209. doi: 10.1016/j.apcata.2019.01.001
    [26]
    LYU S, LIU C, WANG G, ZHANG Y, LI J, WANG L. Structural evolution of carbon in an Fe@C catalyst during the Fischer-Tropsch synthesis reaction[J]. Catal Sci Technol,2019,9:1013−1020. doi: 10.1039/C8CY02420K
    [27]
    PHIENLUPHON R, AI P, GAO X, YONEYAMA Y, REUBROYCHAROEN P, VITIDSANT T, TSUBAKI N. Direct fabrication of catalytically active FexC sites by sol-gel autocombustion for preparing Fischer-Tropsch synthesis catalysts without reduction[J]. Catal Sci Technol,2016,6:7597−7603. doi: 10.1039/C6CY01383J
    [28]
    OAR-ARTETA L, VALERO-ROMERO M J, WEZENDONK T, KAPTEIJN F, GASCON J. Formulation and catalytic performance of MOF-derived Fe@C/Al composites for high temperature Fischer-Tropsch synthesis[J]. Catal Sci Technol,2018,8:210−220. doi: 10.1039/C7CY01753G
    [29]
    CHEN W, FAN Z, PAN X, BAO X. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst[J]. J Am Chem Soc,2008,130:9414−9419. doi: 10.1021/ja8008192
    [30]
    韩小雪, 陈妍希, 赵俏, 陈佳佳, 黄守莹, 吕静, 马新宾. 碳限域铁基费托合成催化剂研究进展[J]. 化工进展, 2021, 40: 1917−1927.

    HAN Xiao-xue, CHEN Yan-xi, ZHAO Qiao, CHEN Jia-jia, HUANG Shou-ying, LÜ Jing, MA Xin-bin. Advances in carbon-confined iron-based catalysts for Fischer-Tropsch synthesis[J]. Chem Ind Eng Prog, 2021, 40: 1917−1927.
    [31]
    DIKIN D A, STANKOVICH S, ZIMNEY E J, PINER R D, DOMMETT G H B, EVMENENKO G, NGUYEN S T, RUOFF R S. Preparation and characterization of graphene oxide paper[J]. Nature,2007,448:457−460. doi: 10.1038/nature06016
    [32]
    WEI Y, LUO D, ZHANG C, LIU J, HE Y, YANG Y, LI Y. Precursor controlled synthesis of graphene oxide supported iron catalysts for Fischer-Tropsch synthesis[J]. Catal Sci Technol,2018,8:2883−2893. doi: 10.1039/C8CY00617B
    [33]
    JIANG F, LIU B, LI W, ZHANG M, LI Z, LIU X. Two-dimensional graphene-directed formation of cylindrical iron carbide nanocapsules for Fischer-Tropsch synthesis[J]. Catal Sci Technol,2017,7:4609−4621. doi: 10.1039/C7CY01172E
    [34]
    XIE J, YANG J, DUGULAN A I, HOLMEN A, CHEN D, DE JONG K P, LOUWERSE M J. Size and promoter effects in supported iron Fischer-Tropsch catalysts: Insights from experiment and theory[J]. ACS Catal,2016,6:3147−3157. doi: 10.1021/acscatal.6b00131
    [35]
    LIU Y, CHEN J F, BAO J, ZHANG Y. Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas[J]. ACS Catal,2015,5:3905−3909. doi: 10.1021/acscatal.5b00492
    [36]
    YANG P, JIANG F, LIU B, XU Y, LIU X. Structural evolution of large Fe3O4 microspheres on graphene oxide for efficient conversion of syngas into α-olefins[J]. New J Chem,2020,44:4987−4991. doi: 10.1039/D0NJ00201A
    [37]
    HUMMERS JR W S, OFFEMAN R E. Preparation of graphitic oxide[J]. J Am Chem Soc,1958,80:1339−1339. doi: 10.1021/ja01539a017
    [38]
    MU J, CHEN B, GUO Z, ZHANG M, ZHANG Z, ZHANG P, SHAO C, LIU Y. Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: Synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials[J]. Nanoscale,2011,3:5034−5040. doi: 10.1039/c1nr10972c
    [39]
    ZHANG S, SHAO Y, LIAO H, ENGELHARD M H, YIN G, LIN Y. Polyelectrolyte-induced reduction of exfoliated graphite oxide: A facile route to synthesis of soluble graphene nanosheets[J]. ACS Nano,2011,5:1785−1791. doi: 10.1021/nn102467s
    [40]
    MOUSSA S O, PANCHAKARLA L S, HO M Q, EL-SHALL M S. Graphene-supported, iron-based nanoparticles for catalytic production of liquid hydrocarbons from synthesis gas: The role of the graphene support in comparison with carbon nanotubes[J]. ACS Catal,2014,4:535−545. doi: 10.1021/cs4010198
    [41]
    ZHANG W, ZHANG Y, TIAN Y, YANG Z, XIAO Q, GUO X, JING L, ZHAO Y, YAN Y, FENG J, SUN K. Insight into the capacitive properties of reduced graphene oxide[J]. ACS Appl Mater Inter,2014,6:2248−2254. doi: 10.1021/am4057562
    [42]
    WEI Y, ZHANG C, LIU X, WANG Y, CHANG Q, QING M, WEN X, YANG Y, LI Y. Enhanced Fischer-Tropsch performances of graphene oxide-supported iron catalysts via argon pretreatment[J]. Catal Sci Technol,2018,8:1113−1125. doi: 10.1039/C7CY02449E
    [43]
    ZHANG Z, ZHANG J, WANG X, SI R, XU J, HAN Y-F. Promotional effects of multiwalled carbon nanotubes on iron catalysts for Fischer-Tropsch to olefins[J]. J Catal,2018,365:71−85. doi: 10.1016/j.jcat.2018.05.021
    [44]
    WU T, LIN J, CHENG Y, TIAN J, WANG S, XIE S, PEI Y, YAN S, QIAO M, XU H, ZONG B. Porous graphene-confined Fe-K as highly efficient catalyst for CO2 direct hydrogenation to light olefins[J]. ACS Appl Mater Inter,2018,10:23439−23443. doi: 10.1021/acsami.8b05411
    [45]
    ABBASLOU R M M, TAVASSOLI A, SOLTAN J, DALAI A K. Iron catalysts supported on carbon nanotubes for Fischer-Tropsch synthesis: Effect of catalytic site position[J]. Appl Catal A: Gen,2009,367:47−52. doi: 10.1016/j.apcata.2009.07.025
    [46]
    XU Y, SHI C, LIU B, WANG T, ZHENG J, LI W, LIU D, LIU X. Selective production of aromatics from CO2[J]. Catal Sci Technol,2019,9:593−610. doi: 10.1039/C8CY02024H
    [47]
    DE SMIT E, CINQUINI F, BEALE A M, SAFONOVA O V, VAN BEEK W, SAUTET P, WECKHUYSEN B M. Stability and reactivity of ϵ−χ−θ iron carbide catalyst phases in Fischer-Tropsch synthesis: Controlling μc[J]. J Am Chem Soc,2010,132:14928−14941. doi: 10.1021/ja105853q
    [48]
    CHANG Q, ZHANG C, LIU C, WEI Y, CHERUVATHUR A V, DUGULAN A I, NIEMANTSVERDRIET J W, LIU X, HE Y, QING M, ZHENG L, YUN Y, YANG Y, LI Y. Relationship between iron carbide phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and catalytic performances of Fe/SiO2 Fischer-Tropsch catalysts[J]. ACS Catal,2018,8:3304−3316. doi: 10.1021/acscatal.7b04085
    [49]
    WANG P, CHEN W, CHIANG F-K, DUGULAN A I, SONG Y, PESTMAN R, ZHANG K, YAO J, FENG B, MIAO P, XU W, HENSEN E J M. Synthesis of stable and low-CO2 selective ε-iron carbide Fischer-Tropsch catalysts[J]. Sci Adv,2018,4:2947. doi: 10.1126/sciadv.aau2947
    [50]
    WEZENDONK T A, SUN X, DUGULAN A I, VAN HOOF A J F, HENSEN E J M, KAPTEIJN F, GASCON J. Controlled formation of iron carbides and their performance in Fischer-Tropsch synthesis[J]. J Catal,2018,362:106−117. doi: 10.1016/j.jcat.2018.03.034
    [51]
    XU K, SUN B, LIN J, WEN W, PEI Y, YAN S, QIAO M, ZHANG X, ZONG B. ε-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst[J]. Nat Commun,2014,5:5783. doi: 10.1038/ncomms6783
    [52]
    BUKUR D B, OKABE K, ROSYNEK M P, LI C P, WANG D J, RAO K R P M, HUFFMAN G P. Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis: I. Characterization studies[J]. J Catal,1995,155:353−365. doi: 10.1006/jcat.1995.1217
    [53]
    NIEMANTSVERDRIET J W, VAN DER KRAAN A M, VAN DIJK W L, VAN DER BAAN H S. Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studied with Mössbauer spectroscopy, x-ray diffraction, carbon content determination, and reaction kinetic measurements[J]. J Phys Chem,1980,84:3363−3370. doi: 10.1021/j100462a011
    [54]
    LI J, CHENG X, ZHANG C, YANG Y, LI Y. Effects of alkali on iron-based catalysts for Fischer-Tropsch synthesis: CO chemisorptions study[J]. J Mol Catal A Chem,2015,396:174−180. doi: 10.1016/j.molcata.2014.10.006
    [55]
    NIU L, LIU X, LIU J, LIU X, WEN X, YANG Y, XU J, LI Y. Tuning carburization behaviors of metallic iron catalysts with potassium promoter and CO/syngas/C2H4/C2H2 gases[J]. J Catal,2019,371:333−345. doi: 10.1016/j.jcat.2019.02.013
    [56]
    CHENG K, VIRGINIE M, ORDOMSKY V V, CORDIER C, CHERNAVSKII P A, IVANTSOV M I, PAUL S, WANG Y, KHODAKOV A Y. Pore size effects in high-temperature Fischer-Tropsch synthesis over supported iron catalysts[J]. J Catal,2015,328:139−150. doi: 10.1016/j.jcat.2014.12.007
    [57]
    CASAVOLA M, HERMANNSDöRFER J, DE JONGE N, DUGULAN A I, DE JONG K P. Fabrication of Fischer-Tropsch catalysts by deposition of iron nanocrystals on carbon nanotubes[J]. Adv Funct Mater,2015,25:5309−5319. doi: 10.1002/adfm.201501882
    [58]
    SANTOS V P, WEZENDONK T A, JAéN J J D, DUGULAN A I, NASALEVICH M A, ISLAM H-U, CHOJECKI A, SARTIPI S, SUN X, HAKEEM A A, KOEKEN A C J, RUITENBEEK M, DAVIDIAN T, MEIMA G R, SANKAR G, KAPTEIJN F, MAKKEE M, GASCON J. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts[J]. Nat Commun,2015,6:6451. doi: 10.1038/ncomms7451
    [59]
    DUAN X, WANG D, QIAN G, WALMSLEY J C, HOLMEN A, CHEN D, ZHOU X. Fabrication of K-promoted iron/carbon nanotubes composite catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. J Energy Chem,2016,25:311−317. doi: 10.1016/j.jechem.2016.01.003
    [60]
    OJEDA M, NABAR R, NILEKAR A U, ISHIKAWA A, MAVRIKAKIS M, IGLESIA E. CO activation pathways and the mechanism of Fischer-Tropsch synthesis[J]. J Catal,2010,272:287−297. doi: 10.1016/j.jcat.2010.04.012
    [61]
    LIU B, LI W, ZHENG J, LIN Q, ZHANG X, ZHANG J, JIANG F, XU Y, LIU X. CO2 formation mechanism in Fischer-Tropsch synthesis over iron-based catalysts: A combined experimental and theoretical study[J]. Catal Sci Technol,2018,8:5288−5301. doi: 10.1039/C8CY01621F
    [62]
    LIN Q, LIU B, JIANG F, FANG X, XU Y, LIU X. Assessing the formation of cobalt carbide and its catalytic performance under realistic reaction conditions and tuning product selectivity in a cobalt-based FTS reaction[J]. Catal Sci Technol,2019,9:3238−3258. doi: 10.1039/C9CY00328B
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (284) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return