Volume 49 Issue 5
May  2021
Turn off MathJax
Article Contents
LIU Fang-gang, JIN Li-jun, YANG Jing, TANG Zi-chao, HU Hao-quan. In-situ characterization of volatiles from pyrolysis of Fengfeng coal by a double ionization time-of-flight mass spectrometer[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 573-581. doi: 10.1016/S1872-5813(21)60076-2
Citation: LIU Fang-gang, JIN Li-jun, YANG Jing, TANG Zi-chao, HU Hao-quan. In-situ characterization of volatiles from pyrolysis of Fengfeng coal by a double ionization time-of-flight mass spectrometer[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 573-581. doi: 10.1016/S1872-5813(21)60076-2

In-situ characterization of volatiles from pyrolysis of Fengfeng coal by a double ionization time-of-flight mass spectrometer

doi: 10.1016/S1872-5813(21)60076-2
Funds:  The project was supported by the National Key Research and Development Program of China (2016YFB0600301)
  • Received Date: 2020-12-29
  • Rev Recd Date: 2021-02-08
  • Available Online: 2021-03-30
  • Publish Date: 2021-05-28
  • Coal from Fengfeng (FF) colliery, Hebei, China, was pyrolyzed in a self-developed pyrolysis reactor coupled with double ionization sources (viz., electron impact ionization (EI) and photoionization (PI)) and time-of-flight mass spectrometer (Py-EI/PI-TOFMS), to characterize in-situ the primary products from pyrolysis (heteroatom-containing compounds in particular). The relative contents of various pyrolysis products were obtained by semi-quantitative analysis and the temperature-evolved profile of each product was obtained by scanning the signal of the distinguished peak with the lapse of time; in addition, the evolution of five small molecule gaseous products (viz., H2O, CO, CO2, H2 and CH4) was analyzed by EI-TOFMS. The results indicate that the Py-PI-TOFMS system is able to detect and characterize the primary products in-situ during coal pyrolysis. In the pyrolysis products with a mass-to-charge ratio (m/z) less than 240, which account for about 70% of detected volatiles, hydrocarbons consist of mainly aromatics of 1–3 rings, whereas the phenolic compounds are dominated by phenols containing 1–3 benzene rings (especially the 3-ring phenols). The peak temperature with maximum evolution of phenols containing the same alkyl substituents shifts to lower temperature with the increase of the number of aromatic rings. In addition, the relative contents of nitrogen/sulfur-containing compounds are all less than 1.0%, where the content of sulfur-containing heterocyclic compounds is higher than that of nitrogen-containing heterocyclic compounds.
  • loading
  • [1]
    STOCK L M. Coal pyrolysis[J]. Acc Chem Res,1989,22:427−433. doi: 10.1021/ar00168a004
    [2]
    MORGAN T J, KANDIYOTI R. Pyrolysis of coals and biomass: Analysis of thermal breakdown and its products[J]. Chem Rev,2014,114:1547−1607. doi: 10.1021/cr400194p
    [3]
    KONG J, ZHAO R F, BAI Y H, LI G L, ZHANG C, LI F. Study on the formation of phenols during coal flash pyrolysis using pyrolysis-GC/MS[J]. Fuel Process Technol,2014,127:41−46. doi: 10.1016/j.fuproc.2014.06.004
    [4]
    MAHAT R K, RODGERS W, BASILE F. Microwave radiation heating in pressurized vessels for the rapid extraction of coal samples for broad spectrum GC-MS analysis[J]. Energy Fuels,2014,28:6326−6335. doi: 10.1021/ef501659h
    [5]
    LIEVENS C, CI D H, BAI Y, MA L G, ZHANG R, CHEN J Y, GAI Q Q, LONG Y H, GUO X F. A study of slow pyrolysis of one low rank coal via pyrolysis–GC/MS[J]. Fuel Process Technol,2013,116:85−93. doi: 10.1016/j.fuproc.2013.04.026
    [6]
    ARENILLAS A, RUBIERA F, PIS J J. Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behaviour of different rank coals[J]. J Anal Appl Pyrolysis,1999,50:31−46. doi: 10.1016/S0165-2370(99)00024-8
    [7]
    MIURA K. Mild conversion of coal for producing valuable chemicals[J]. Fuel Process Technol,2000,62:119−135. doi: 10.1016/S0378-3820(99)00123-X
    [8]
    NOLA G D, DEJONG W, H S. TG-FTIR characterization of coal and biomass single fuels and blends under slow heating rate conditions: Partitioning of the fuel-bound nitrogen[J]. Fuel Process Technol,2010,91:103−115. doi: 10.1016/j.fuproc.2009.09.001
    [9]
    POUTSMA M L. Free-radical thermolysis and hydrogenolysis of model hydrocarbons relevant to processing of coal[J]. Energy Fuels,1990,4:113−131. doi: 10.1021/ef00020a001
    [10]
    MüHLBERGER F, STREIBEL T, WIESER J, ULRICH A, ZIMMERMANN R. Single photon ionization time-of-flight mass spectrometry with a pulsed electron beam pumped excimer VUV lamp for on-line gas analysis: Setup and first results on cigarette smoke and human breath[J]. Anal Chem,2005,77:7408−7414. doi: 10.1021/ac051194+
    [11]
    MAMYRIN B A. Time-of-flight mass spectrometry[J]. Int J Mass Spectrom,2001,206:251−266. doi: 10.1016/S1387-3806(00)00392-4
    [12]
    XU J Y, ZHUO J K, ZHU Y N, PAN Y, YAO Q. Analysis of volatile organic pyrolysis products of bituminous and anthracite coals with single-photon ionization time-of-flight mass spectrometry and gas chromatography/mass spectrometry[J]. Energy Fuels,2016,31:730−737.
    [13]
    SHI L, WANG X L, ZHANG S Y, WU X H, YUAN L, TANG Z C. A new in-situ pyrolytic time-of-flight mass spectrometer instrument for study on coal pyrolysis[J]. J Anal Appl Pyrolysis,2016,117:347−353. doi: 10.1016/j.jaap.2015.10.009
    [14]
    LI G S, FAN X, YOU C Y, ZHAO Y P, WANG R Y, WEI X Y, MA F Y, LU X, MO W L, LI X. Molecular characteristics of the soluble components from three low-rank coals based on the analyses using GC/MS and GC/Q-TOF MS[J]. Fuel,2019,254:115602.
    [15]
    WANG F, FAN X, XIA J L, WEI X Y, YU Y R, ZHAO Y P, CAO J P, ZHAO W, WANG R Y. Insight into the structural features of low-rank coals using comprehensive two dimensional gas chromatography/time-of-flight mass spectrometry[J]. Fuel,2018,212:293−301. doi: 10.1016/j.fuel.2017.10.044
    [16]
    CZECH H, SIPPULA O, KORTELAINEN M, TISSARI J, RADISCHAT C, PASSIG J, STREIBEL T, JOKINIEMI J, ZIMMERMANN R. On-line analysis of organic emissions from residential wood combustion with single-photon ionisation time-of-flight mass spectrometry (SPI-TOFMS)[J]. Fuel,2016,177:334−342. doi: 10.1016/j.fuel.2016.03.036
    [17]
    ZHOU Z Y, LIU C J, CHEN X M, MA H, ZHOU C Q, WANG Y Z, QI F. On-line photoionization mass spectrometric study of lignin and lignite co-pyrolysis: Insight into the synergetic effect[J]. J Anal Appl Pyrolysis,2019,137:285−292. doi: 10.1016/j.jaap.2018.12.009
    [18]
    LI G, LI L, JIN L J, TANG Z C, FAN H J, HU H Q. Experimental and theoretical investigation on three α,ω-diarylalkane pyrolysis[J]. Energy Fuels,2014,28:6905−6910. doi: 10.1021/ef502012b
    [19]
    ZHOU Y, LI L, JIN L.J, ZHOU J, SHI Z W, LI Y, HU H Q. Pyrolytic behavior of coal-related model compounds connected with C–C bridged linkages by in-situ pyrolysis vacuum ultraviolet photoionization mass spectrometry[J]. Fuel,2019,241:533−541. doi: 10.1016/j.fuel.2018.12.046
    [20]
    JAKAB E, TILL F, VARHEGYI G. Thermogravimetric-mass spectrometric study on the low temperature oxidation of coals[J]. Fuel Process Technol,1991,28:221−238.
    [21]
    CAMPBELL J H. Pyrolysis of subbituminous coal in relation to in-situ gasification[J]. Fuel,1978,57:217−224. doi: 10.1016/0016-2361(78)90119-9
    [22]
    HEEK K H V, HODEK W. Structure and pyrolysis behaviour of different coals and relevant model substances[J]. Fuel,1994,73:886−896. doi: 10.1016/0016-2361(94)90283-6
    [23]
    CHARPENAY S, SERIO M A, BASSILAKIS R, SOLOMON P R. Influence of maturation on the pyrolysis products from coals and kerogens. 1. Experiment[J]. Energy Fuels,1996,10:19−25. doi: 10.1021/ef950149+
    [24]
    SOLOMON P R, HAMBLEN D G, SERIO M A, YU Z Z, CHARPENAY S. A characterization method and model for predicting coal conversion behaviour[J]. Fuel,1993,72:469−488. doi: 10.1016/0016-2361(93)90106-C
    [25]
    IBARRA J V, MOLINER R, GAVILȦN M P. Functional group dependence of cross-linking reactions during pyrolysis of coal[J]. Fuel,1991,70:408−413. doi: 10.1016/0016-2361(91)90131-S
    [26]
    CHENG J, ZHANG Y S, WANG T, NORRIS P, CHEN W Y, PAN W P. Thermogravimetric-Fourier transform infrared spectroscopy-gas chromatography/mass spectrometry study of volatile organic compounds from coal pyrolysis[J]. Energy Fuels,2017,31:7042−7051. doi: 10.1021/acs.energyfuels.7b01073
    [27]
    HE Q Q, WAN K J, HOADLEY A, YEASMIN H, MIAO Z Y. TG-GC-MS study of volatile products from Shengli lignite pyrolysis[J]. Fuel,2015,156:121−128. doi: 10.1016/j.fuel.2015.04.043
    [28]
    WANG P F, JIN L J, LIU J H, ZHU S W, HU H Q. Analysis of coal tar derived from pyrolysis at different atmospheres[J]. Fuel,2013,104:14−21. doi: 10.1016/j.fuel.2010.06.041
    [29]
    LINSTROM P J. NIST Chemistry Webbook [M]. http://webbooknistgov/chemistry/.2018.
    [30]
    LI G, ZHANG S Y, JIN L J, TANG Z C, HU H Q. In-situ analysis of volatile products from lignite pyrolysis with pyrolysis-vacuum ultraviolet photoionization and electron impact mass spectrometry[J]. Fuel Process Technol,2015,133:232−236. doi: 10.1016/j.fuproc.2015.02.016
    [31]
    ZHOU Y, LI L, JIN L J, ZHU J L, LI J G, LI Y, FAN H J, HU H Q. Effect of functional groups on volatile evolution in coal pyrolysis process with in-situ pyrolysis photoionization time-of-flight mass spectrometry[J]. Fuel,2020,260:116322.
    [32]
    SUN Q L, LI W, CHEN H K, LI B Q. The variation of structural characteristics of macerals during pyrolysis[J]. Fuel,2003,82:669−676. doi: 10.1016/S0016-2361(02)00356-3
    [33]
    孙庆雷, 李文, 李东涛, 陈皓侃, 李保庆, 白向飞, 李文华. 神木煤有机显微组分的结构特征与热转化性质的关系[J]. 燃料化学学报,2003,31(2):97−102. doi: 10.3969/j.issn.0253-2409.2003.02.001

    SUN Qing-lei, LI Wen, LI Dong-tao, CHEN Hao-kan, LI Bao-qing, BAI Xiang-fei, LI Wen-hua. Relationship between structure characteristics and thermal conversion property of Shenmu maceral concentrates[J]. J Fuel Chem Technol,2003,31(2):97−102. doi: 10.3969/j.issn.0253-2409.2003.02.001
    [34]
    DONG J, LI F, XIE K C. Study on the source of polycyclic aromatic hydrocarbons (PAHs) during coal pyrolysis by PY-GC-MS[J]. J Hazard Mater,2012,243:80−85. doi: 10.1016/j.jhazmat.2012.09.073
    [35]
    MEYERS R A. Coal Structure[M]. London: Academic Press Inc., 1982.
    [36]
    BLAZSÓ M, JAKAB E. Study of thermal decomposition reactions in coals by pyrolysis-gas chromatography-mass spectrometry[J]. J Anal Appl Pyrolysis,1985,8:189−194.
    [37]
    YAN L J, BAI Y.H, ZHAO R F, LI F, XIE K C. Correlation between coal structure and release of the two organic compounds during pyrolysis[J]. Fuel,2015,145:12−17. doi: 10.1016/j.fuel.2014.12.056
    [38]
    BUCKLEY A N. Nitrogen functionality in coals and coal-tar pitch determined by X-ray photoelectron spectroscopy[J]. Fuel Process Technol,1994,38:165−179. doi: 10.1016/0378-3820(94)90046-9
    [39]
    BARTLE K D, PERRY D L, WALLACE S. The functionality of nitrogen in coal and derived liquids: An XPS study[J]. Fuel Process Technol,1987,15:350−361.
    [40]
    SOLOMON P R, COLKET M B. Evolution of fuel nitrogen in coal devolatilization[J]. Fuel,1978,57:749−755. doi: 10.1016/0016-2361(78)90133-3
    [41]
    KELEMEN S R, GORBATY M L, KWIATEK P J, FLETCHER T H, WATT M, SOLUM M S, PUGMIRE R J. Nitrogen transformations in coal during pyrolysis[J]. Energy Fuels,1998,12:159−173. doi: 10.1021/ef9701246
    [42]
    陈鹏. 用XPS研究兖州煤各显微组分中有机硫存在形态[J]. 燃料化学学报,1997,25(3):238−241.

    CHEN Peng. Application of XPS in study dormation of organic sulfur in macerals of Yanzhou coal[J]. J Fuel Chem Technol,1997,25(3):238−241.
    [43]
    李梅, 杨俊和, 张启锋, 常海洲, 孙慧. 用 XPS研究新西兰高硫煤热解过程中氮、硫官能团的转变规律[J], 燃料化学学报, 2013, 41(11): 1287−1293.

    LI Mei, YANG Jun-he, ZHANG Qi-feng, CHANG Hai-zhou, SUN Hui. XPS study on transformation of N- and S- functional groups during pyrolysis of high sulfur New Zealand coal[J]. J Fuel Chem Technol, 2013, 41(11): 1287−1293.
    [44]
    ZHAO Y P, HU H Q, JIN L J, HE X F, WU B. Pyrolysis behavior of vitrinite and inertinite from Chinese Pingshuo coal by TG–MS and in a fixed bed reactor[J]. Fuel Process Technol,2011,92:780−786. doi: 10.1016/j.fuproc.2010.09.005
    [45]
    XING M W, KONG J, DONG J, JIAO H L, LI F. Thiophenic sulfur compounds released during coal pyrolysis[J]. Environ Eng Sci,2013,30:273−279. doi: 10.1089/ees.2011.0540
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (404) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return