Volume 49 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
YANG Xiao-meng, LI Zuo-peng, QIN Jun, WU Mei-xia, LIU Jia-li, GUO Yong, MA Yan-qing, FENG Feng. Preparation of Ni-Fe alloy foam for oxygen evolution reaction[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 827-834. doi: 10.1016/S1872-5813(21)60084-1
Citation: YANG Xiao-meng, LI Zuo-peng, QIN Jun, WU Mei-xia, LIU Jia-li, GUO Yong, MA Yan-qing, FENG Feng. Preparation of Ni-Fe alloy foam for oxygen evolution reaction[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 827-834. doi: 10.1016/S1872-5813(21)60084-1

Preparation of Ni-Fe alloy foam for oxygen evolution reaction

doi: 10.1016/S1872-5813(21)60084-1
Funds:  The project was supported by Natural Science Foundation of Shanxi (201701D121016, 201901D111310), the Science and Technology Innovation Project of Shanxi Province University (2020L0478) and Natural Science Foundation of Datong (201819, 2019160)
More Information
  • NiFe oxyhydroxide and hydroxide have been proven to be efficient and earth-abundant non-noble metal catalysts for the oxygen evolution reaction (OER). However, the fragile nature of these oxyhydroxides or hydroxides severely reduces the long-term stability and hinders the industrial applications. Meanwhile, the poor electrical conductivity of these materials also has seriously led to the higher overpotential when applying to the OER. Herein, a novel method using polyurethane (PU) sponge as electroplating was carried out to design NiFe alloy foam with different Fe content for OER. The physical properties of NiFe alloy foams were characterized by Scanning Electronic Microscopy (SEM), Energy Dispersive System (EDS) and X-Ray Diffraction (XRD), respectively, suggesting that the porous NiFe alloy is formed with uniform distribution of Ni and Fe. The OER performance was tested by Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV), Electrochemical Impedance Spectroscopy (EIS), I-t, etc. The results showed that the doped Fe could significantly improve the conductivity and OER performance of Ni foam. The NiFe alloy foam with 30% Fe exhibited 292 mV overpotential at 10 mA/cm2 and the Tafel slope 126.12 mV/decade in alkaline solution with excellent long-term stability. Without any complex electrode preparation processes and binders, NiFe alloy foam is much convenient to use as anode of water splitting in alkaline media for industrial applications.
  • loading
  • [1]
    ZENG K, ZHANG D. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Prog Energ Combust,2010,36(3):307−326. doi: 10.1016/j.pecs.2009.11.002
    [2]
    FENG L, YU G T, WU Y Y, LI G D, LI H, SUN Y H, ASEFA T, CHEN W, ZOU X X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J]. J Am Chem Soc,2015,137(44):14023−14026. doi: 10.1021/jacs.5b08186
    [3]
    GU Y, CHEN S, REN J, JIA Y A, CHRN C M, KOMARNENI S, YANG D J, YAO X D. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting[J]. ACS Nano,2018,12(1):245−253. doi: 10.1021/acsnano.7b05971
    [4]
    KOPER M T M. Hydrogen electrocatalysis: a basic solution[J]. Nat Chem,2013,5:255−256. doi: 10.1038/nchem.1600
    [5]
    ZHENG Y, JIAO Y, ZHU Y, CAI Q, VASILEFF A, LI L H, HAN Y, CHEN Y, QIAO S Z. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions[J]. J Am Chem Soc,2017,139(9):3336−3339. doi: 10.1021/jacs.6b13100
    [6]
    WU M, GUO B, NIE A, LIU R. Tailored architectures of FeNi alloy embedded in N-doped carbon as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery[J]. J Colloid Interface Sci,2020,561:585−592. doi: 10.1016/j.jcis.2019.11.033
    [7]
    PETKUCHEVA E, BORISOV G, LEFTEREFTEROVA E, HEISS J, SCHNAKENBERG U, SLAVCHEVA E. Gold-supported magnetron sputtered Ir thin films as OER catalysts for costefficient water electrolysis[J]. Int J Hydrog Energy,2018,43(35):16905−16912. doi: 10.1016/j.ijhydene.2018.01.188
    [8]
    FORGIE R, BUGOSH G, NEYERLIN K C, LIU Z, STRASSER P. Bimetallic Ru electrocatalysts for the oer and electrolytic water splitting in acidic media[J]. Electrochem Solid-State Lett,2010,13(4):B36−B39.
    [9]
    NONG H N, GAN L, WILLINGER E, TESCHNER D, STRASSER P. IrOx core-shell nanocatalysts for cost- and energyefficient electrochemical water splitting[J]. Chem Sci,2014,5(8):2955−2963. doi: 10.1039/C4SC01065E
    [10]
    GAO W, XIA Z, CAO F, HO J C, JIANG Z, QU Y. Comprehensive understanding of the spatial configurations of CeO2 in NiO for the electrocatalytic oxygen evolution reaction: Embedded or surface-loaded[J]. Adv Funct Mater,2018,28(11):1706056.
    [11]
    JIN H, WANG J, SU D, WEI Z, PANG Z, WANG Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution[J]. J Am Chem Soc,2015,137(7):2688−2694. doi: 10.1021/ja5127165
    [12]
    PICKRAHN K L, PARK S W, GORLIN Y, LEE H B R, JARAMILLO T F, BENT S F. Active MnOx electrocatalysts prepared by atomic layer deposition for oxygen evolution and oxygen reduction reactions[J]. Adv Eng Mater,2012,2(10):1269−1277. doi: 10.1002/aenm.201200230
    [13]
    ZHAO Z, LAMOUREUX P S, KULKARNI A, BAJDICH M. Trends in oxygen electrocatalysis of 3d-Layered (oxy)(hydro)oxides[J]. Chem Electro Chem,2019,11(15):3423−3431.
    [14]
    QIN Y, WANG F, SHANG J, IQBAL M, HAN A, SUN X, XU H, LIU J. Ternary NiCoFe-layered double hydroxide hollow polyhedrons as highly efficient electrocatalysts for oxygen evolution reaction[J]. J Energy Chem,2020,43:104−107. doi: 10.1016/j.jechem.2019.08.014
    [15]
    MAJHI K C, KARFA P, MADHURI R. Bimetallic transition metal chalcogenide nanowire array: An effective catalyst for overall water splitting[J]. Electrochim Acta,2019,318:901−910. doi: 10.1016/j.electacta.2019.06.106
    [16]
    DU Y, KHAN S, ZHANG X, YU G, LIU R, ZHENG B, NADIMICHERLA R, WU D, FU R. In-situ preparation of porous carbon nanosheets loaded with metal chalcogenides for a superior oxygen evolution reaction[J]. Carbon,2019,149:144−151. doi: 10.1016/j.carbon.2019.04.048
    [17]
    ZHAO D, SHAO Q, ZHANG Y, HUANG X. N-Doped carbon shelled bimetallic phosphates for efficient electrochemical overall water splitting[J]. Nanoscale,2018,10(48):22787−22791. doi: 10.1039/C8NR07756H
    [18]
    SINGH R N, SINGH J P, SINGH A. Electrocatalytic properties of new spinel-type MMoO4 (M = Fe, Co and Ni) electrodes for oxygen evolution in alkaline solutions[J]. Int J Hydrog Energy,2008,33(16):4260−4264. doi: 10.1016/j.ijhydene.2008.06.008
    [19]
    MAY K J, CARLTON C E, STOERZINGER K A, RISCH M, SUNTIVICH J, LEE Y L, GRIMAUD A, SHAO-HORN Y. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts[J]. J Phys Chem Lett,2012,3(22):3264−3270. doi: 10.1021/jz301414z
    [20]
    FRIEBEL D, LOUIE M W, BAJDICH M, SANWALD K E, CAI Y, WISE A M, CHENG M J, SOKARAS D, WENG T C, ALONSO-MORI R, DAVIS R C, BARGER J R, NØRSKOV J K, NILSSON A, BELL A T. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting[J]. J Am Chem Soc,2015,137(3):1305−1313. doi: 10.1021/ja511559d
    [21]
    KLAUS S, CAI Y, LOUIE M W, TROTOCHAUD L, BELL A T. Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity[J]. J Phys Chem C,2015,119(13):7243−7254. doi: 10.1021/acs.jpcc.5b00105
    [22]
    LYU P, NATCHTIGALL P. Systematic computational investigation of an Ni3Fe catalyst for the OER[J]. Catal Today,2020,345:220−226. doi: 10.1016/j.cattod.2019.09.049
    [23]
    MA Y, DAI X, LIU M, YONG J, QIAO H, JIN A, LI Z, HUANG X, WWANG H, ZHANG X. Strongly coupled FeNi alloys/NiFe2O4@carbonitride layers-assembled microboxes for enhanced oxygen evolution reaction[J]. ACS Appl Mater Interfaces,2016,8(50):34396−34404. doi: 10.1021/acsami.6b11821
    [24]
    LI W, HU Q, LIU Y, ZHANG M, WANG J, HAN X, ZHONG C, HU W, DENG Y. Powder metallurgy synthesis of porous Ni-Fe alloy for oxygen evolution reaction and overall water splitting[J]. J Mater Sci Technol,2019,37:154−160.
    [25]
    ULLAL Y, HEGDE A C. Electrodeposition and electro-catalytic study of nanocrystalline Ni-Fe alloy[J]. Int J Hydrog Energy,2014,39:10485−10492. doi: 10.1016/j.ijhydene.2014.05.016
    [26]
    HOU Y, CUI S M, WEN Z H, GUO X R, FENG X L, CHRN J H. Strongly coupled 3D hybrids of N-doped porous carbon Nanosheet/CoNi alloy-encapsulated carbon nanotubes for enhanced electrocatalysis[J]. Small,2015,11(44):5940−5948. doi: 10.1002/smll.201502297
    [27]
    SHAH S A, JI Z, SHEN X, YUE X, ZHU G, XU K, YUAN A, ULLAH N, ZHU J, SONG P, LI X. Thermal synthesis of FeNi@nitrogen-doped graphene dispersed on nitrogen-doped carbon matrix as an excellent electrocatalyst for oxygen evolution reaction[J]. ACS Appl Energy Mater,2019,2(6):4075−4083. doi: 10.1021/acsaem.9b00199
    [28]
    WANG C, SUI Y, XU M, LIU C, XIAO G, ZOU B. Synthesis of Ni-Ir nanocages with improved electrocatalytic performance for the oxygen evolution reaction[J]. ACS Sustainable Chem Eng,2017,5(11):9787−9792. doi: 10.1021/acssuschemeng.7b01628
    [29]
    XIANG D, BO X, GAO X, ZHANG C, DU C, ZHENG F, ZHUANG Z, LI P, ZHU L, CHEN W. Novel one-step synthesis of core@shell iron-nickel alloy nanoparticles coated by carbon layers for efficient oxygen evolution reaction electrocatalysis[J]. J Power Sources,2019,438:226988. doi: 10.1016/j.jpowsour.2019.226988
    [30]
    LIU P S, LIANG K M. Preparation and corresponding structure of nickel foam[J]. Mater Sci Technol,2000,16:575−578. doi: 10.1179/026708300101508108
    [31]
    JIN J, XIA J, QIAN X, WU T, LING H, HU A, LI M, HANG T. Exceptional electrocatalytic oxygen evolution efficiency and stability from electrodeposited NiFe alloy on Ni foam[J]. Electrochim Acta,2019,299:567−574. doi: 10.1016/j.electacta.2019.01.026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (545) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return