Volume 49 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
WANG Bao-wei, WANG Ting-ting, ZHAO Jun, LI Zhen-hua, XU Yan, MA Xin-bin. Effect of phosphorus precursor on the catalytic performance of metal phosphides in the methanation of syngas[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 952-959. doi: 10.1016/S1872-5813(21)60110-X
Citation: WANG Bao-wei, WANG Ting-ting, ZHAO Jun, LI Zhen-hua, XU Yan, MA Xin-bin. Effect of phosphorus precursor on the catalytic performance of metal phosphides in the methanation of syngas[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 952-959. doi: 10.1016/S1872-5813(21)60110-X

Effect of phosphorus precursor on the catalytic performance of metal phosphides in the methanation of syngas

doi: 10.1016/S1872-5813(21)60110-X
Funds:  The project was supported by the National High Technology Research and Development Program of China (863 Project, 2015AA050504)
More Information
  • Corresponding author: Tel: +086-22-87401818, E-mail: wangbw@tju.edu.cn
  • Received Date: 2021-01-13
  • Rev Recd Date: 2021-02-10
  • Available Online: 2021-06-01
  • Publish Date: 2021-07-15
  • A series of metal phosphides including MoP, WP, CoP and NiP was prepared by temperature-programmed reduction with hydrogen from different phosphorus precursors. The effect of phosphorus precursor and feed H2/CO ratio on the catalytic performance of metal phosphides in the methanation was investigated. In comparison with diammonium hydrogen phosphate (DAP), phytic acid (PA) as a chelating agent can effectively disperse the metal precursor, reduce the reduction temperature, promote to form pure phosphide phase, and give the phosphide catalyst a higher surface area and a smaller particle size; as a result, the metal phosphides prepared with PA as a phosphorus precursor exhibit higher catalytic activity in methanation. In addition, the catalytic activity of various metal phosphides in methanation follows the sequence of MoP > WP > CoP > NiP. A high H2/CO ratio in the feed is favorable for the methanation over the phosphide catalysts; the selectivity to methane increases with an increase in the H2/CO ratio.
  • loading
  • [1]
    KUSTOV A L, FREY A M, LARSEN K E, JOHANNESSEN T, NØRSKOV J K, CHRISTENSEN C H. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization[J]. Appl Catal A: Gen,2007,320:98−104. doi: 10.1016/j.apcata.2006.12.017
    [2]
    YAN Shuang-hua, SHUANG Jian-yong, HU Si-bin. Methane synthesis technology in coal to natural gas process[J]. Chem Fert Des,2010,48(2):19−21+32.
    [3]
    MENG F, LI X, SHAW G M, SMITH P J, MORGAN D J, PERDJON M, LI Z. Sacrificial carbon strategy toward enhancement of slurry methanation activity and stability over Ni-Zr/SiO2 catalyst[J]. Ind Eng Chem Res,2018,57(14):4798−4806. doi: 10.1021/acs.iecr.7b05157
    [4]
    MENG F, LI X, LI M, CUI X, LI Z. Catalytic performance of CO methanation over La-promoted Ni/Al2O3 catalyst in a slurry-bed reactor[J]. Chem Eng J,2017,313:1548−1555. doi: 10.1016/j.cej.2016.11.038
    [5]
    WANG G, XU S. Research progress of coal based alternative/synthetic natural gas technology[J]. Petrochem Technol,2016,45(1):1−9.
    [6]
    MENG F, LI X, LV X, LI Z. CO hydrogenation combined with water-gas-shift reaction for synthetic natural gas production: A thermodynamic and experimental study[J]. Int J Coal Sci Technol,2018,5(4):439−451.
    [7]
    LIU C, WANG W, XU Y, LI Z, WANG B, MA X. Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2 catalyst[J]. Appl Surf Sci,2018,441:482−490. doi: 10.1016/j.apsusc.2018.02.019
    [8]
    HU H, WANG W, LIU Z, WANG B, LI Z, MA X. Sulfur-resistant CO methanation to CH4 over MoS2/ZrO2 catalysts: Support size effect on morphology and performance of Mo species[J]. Catal Lett,2018,148(8):2585−2595. doi: 10.1007/s10562-018-2438-9
    [9]
    HULLIGER F. Crystal chemistry of the chalcogenides and pnictides of the transition elements[J]. Struct Bond,1968,4(6):83−229.
    [10]
    PÖTTGEN R, HÖNLE W, SCHNERING H G. Phosphides: Solid - State Chemistry [M]. 2006, 1−16.
    [11]
    YANG Y, ZHONG Y, SHI Q, WANG Z, SUN K, WANG H. Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions[J]. Angew Chem Int Ed,2018,57(47):15549−15552. doi: 10.1002/anie.201808311
    [12]
    PRYTZ Ø, LØVVIK O, TAFTØ J. Comparison of theoretical and experimental dielectric functions: Electron energy-loss spectroscopy and density-functional calculations on skutterudites[J]. Phys Rev B,2006,74:245109.
    [13]
    OSHTRAKH MI, LARIONOV MY, GROKHOVSKY VI, SEMIONKIN VA. Study of rhabdite (iron nickel phosphide) microcrystals extracted from Sikhote–Alin iron meteorite by magnetization measurements and Mössbauer spectroscopy[J]. Mater Chem Phys,2011,130(1):373−380.
    [14]
    TEGUS O, BRÜCK E, BUSCHOW K H, DE BOER F R. Transition-metal-based magnetic refrigerants for room-temperature applications[J]. Nature,2002,415(6868):150−152. doi: 10.1038/415150a
    [15]
    BARZ H, KU H C, MEISNER G P, FISK Z, MATTHIAS B T. Ternary transition metal phosphides: High-temperature superconductors[J]. Proc Natl Acad Sci USA,1980,77(6):3132−3134. doi: 10.1073/pnas.77.6.3132
    [16]
    MONTESINOS-CASTELLANOS A, ZEPEDA T A, PAWELEC B, LIMA E, FIERRO J L G, OLIVAS A, DE LOS REYES H J A. Influence of reduction temperature and metal loading on the performance of molybdenum phosphide catalysts for dibenzothiophene hydrodesulfurization[J]. Appl Catal A: Gen,2008,334(1):330−338.
    [17]
    GUO C, TIRUMALA VENKATESWARA RAO K, REYHANITASH E, YUAN Z, ROHANI S, XU C, HE S. Novel inexpensive transition metal phosphide catalysts for upgrading of pyrolysis oil via hydrodeoxygenation[J]. AIChE J,2016,62(10):3664−3672. doi: 10.1002/aic.15286
    [18]
    INFANTES-MOLINA A, MORENO-LEÓN C, PAWELEC B, FIERRO J L G, RODRIGUEZ-CASTELLON E, JIMÉNEZ-LÓPEZ A. Simultaneous hydrodesulfurization and hydrodenitrogenation on MoP/SiO2 catalysts: Effect of catalyst preparation method[J]. Appl Catal B: Environ,2012,113-114:87−99. doi: 10.1016/j.apcatb.2011.11.022
    [19]
    WANG D, ZHANG D, TANG C, ZHOU P, WU Z, FANG B. Hydrogen evolution catalyzed by cobalt-promoted molybdenum phosphide nanoparticles[J]. Catal Sci Technol,2016,6(6):1952−1956. doi: 10.1039/C5CY01457C
    [20]
    KIBSGAARD J, JARAMILLO TF. Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction[J]. Angew Chem Int Ed,2014,53(52):14433−14437. doi: 10.1002/anie.201408222
    [21]
    CHEN J, YANG Y, SHI H, LI M, CHU Y, PAN Z, YU X. Regulating product distribution in deoxygenation of methyl laurate on silica-supported Ni-Mo phosphides: Effect of Ni/Mo ratio[J]. Fuel,2014,129:1−10. doi: 10.1016/j.fuel.2014.03.049
    [22]
    ZHANG G, WANG G, LIU Y, LIU H, QU J, LI J. Highly active and stable catalysts of phytic acid-derivative transition metal p for full water splitting[J]. J Am Chem Soc,2016,138(44):14686−14693. doi: 10.1021/jacs.6b08491
    [23]
    WANG X, NA Z, YIN D, WANG C, WU Y, HUANG G, WANG L. Phytic acid-assisted formation of hierarchical porous CoP/C nanoboxes for enhanced lithium storage and hydrogen generation[J]. ACS Nano,2018,12(12):12238−12246. doi: 10.1021/acsnano.8b06039
    [24]
    ZHUANG M, OU X, DOU Y, ZHANG L, ZHANG Q, WU R, DING Y, SHAO M, LUO Z. Polymer-embedded fabrication of Co2P nanoparticles encapsulated in N, P-doped graphene for hydrogen generation[J]. Nano Lett,2016,16(7):4691−4698. doi: 10.1021/acs.nanolett.6b02203
    [25]
    PU Z, AMIINU IS, ZHANG C, WANG M, KOU Z, MU S. Phytic acid-derivative transition metal phosphides encapsulated in N, P-codoped carbon: an efficient and durable hydrogen evolution electrocatalyst in a wide pH range[J]. Nanoscale,2017,9(10):3555−3560. doi: 10.1039/C6NR09883E
    [26]
    ZHANG C, PU Z, AMIINU I S, ZHAO Y, ZHU J, TANG Y, MU S. Co2P quantum dot embedded N, P dual-doped carbon self-supported electrodes with flexible and binder-free properties for efficient hydrogen evolution reactions[J]. Nanoscale,2018,10(6):2902−2907. doi: 10.1039/C7NR08148K
    [27]
    WANG B, DING G, SHANG Y, LV J, WANG H, WANG E, LI Z, MA X, QIN S, SUN Q. Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3[J]. Appl Catal A: Gen,2012,431-432:144−150. doi: 10.1016/j.apcata.2012.04.029
    [28]
    LIU Z, XU Y, CHENG J, WANG W, WANG B, LI Z, MA X. Comparative study on cubic and tetragonal CexZr1-xO2 supported MoO3-catalysts for sulfur-resistant methanation[J]. Appl Surf Sci,2018,433:730−738. doi: 10.1016/j.apsusc.2017.10.103
    [29]
    OYAMA S T. Novel catalysts for advanced hydroprocessing: transition metal phosphides[J]. J Catal,2003,216(1):343−352.
    [30]
    STINNER C, TANG Z, HAOUAS M, WEBER T, PRINS R. Preparation and 31P NMR characterization of nickel phosphides on silica[J]. J Catal,2002,208(2):456−466.
    [31]
    CHEN J, SHI H, LI L, LI K. Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metal phosphide catalysts[J]. Appl Catal B: Environ,2014,144:870−884. doi: 10.1016/j.apcatb.2013.08.026
    [32]
    LIANG X, ZHANG D, WU Z, WANG D. The Fe-promoted MoP catalyst with high activity for water splitting[J]. Appl Catal A: Gen,2016,524:134−138. doi: 10.1016/j.apcata.2016.06.029
    [33]
    WANG D, SHEN Y, ZHANG X, WU Z. Enhanced hydrogen evolution from the MoP/C hybrid by the modification of ketjen black[J]. J Mater Sci,2017,52(6):3337−3343. doi: 10.1007/s10853-016-0621-1
    [34]
    PRINS R, BUSSELL M E. Metal phosphides: Preparation, characterization and catalytic reactivity[J]. Catal Lett,2012,142(12):1413−1436. doi: 10.1007/s10562-012-0929-7
    [35]
    WHIFFEN V M L, SMITH K J, STRAUS S K. The influence of citric acid on the synthesis and activity of high surface area MoP for the hydrodeoxygenation of 4-methylphenol[J]. Appl Catal A: Gen,2012,419−420:111−125. doi: 10.1016/j.apcata.2012.01.018
    [36]
    WANG R, SMITH K J. Hydrodesulfurization of 4, 6-dimethyldibenzothiophene over high surface area metal phosphides[J]. Appl Catal A: Gen,2009,361(1):18−25.
    [37]
    XIAO P, SK M A, THIA L, GE X, LIM R J, WANG J-Y, LIM K H, WANG X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Energy Environ Sci,2014,7(8):2624−2629. doi: 10.1039/C4EE00957F
    [38]
    BU P, CECILIA J A, OYAMA S T, TAKAGAKI A, INFANTES-MOLINA A, ZHAO H, LI D, RODRÍGUEZ-CASTELLÓN E, JIMÉNEZ LÓPEZ A. Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound[J]. J Catal,2012,294:184−198. doi: 10.1016/j.jcat.2012.07.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (262) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return