Volume 49 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
JIANG Wei-li, HE Li-mei, HUANG Bin, CHEN Ya-qi, ZHOU Guang-lin, ZHOU Hong-jun. Isomerization and hydroformylation of butenes under the catalysis of Rh-BIPHEPHOS[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1173-1180. doi: 10.1016/S1872-5813(21)60126-3
Citation: JIANG Wei-li, HE Li-mei, HUANG Bin, CHEN Ya-qi, ZHOU Guang-lin, ZHOU Hong-jun. Isomerization and hydroformylation of butenes under the catalysis of Rh-BIPHEPHOS[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1173-1180. doi: 10.1016/S1872-5813(21)60126-3

Isomerization and hydroformylation of butenes under the catalysis of Rh-BIPHEPHOS

doi: 10.1016/S1872-5813(21)60126-3
Funds:  The project was supported by the Scientific Research and Technological Development Project of CNPC (LH-17-08-53-02) and the Strategic Cooperation Technology Projects of CNPC and CUPB (ZLZX2020-04).
More Information
  • Corresponding author: E-mail: zhouguanglin2@163.com
  • Received Date: 2021-01-27
  • Rev Recd Date: 2021-03-02
  • Available Online: 2021-06-29
  • Publish Date: 2021-08-31
  • The isomerization and hydroformylation of butene under the catalysis of Rh-BIPHEPHOS were investigated by varying the butene feed and reaction temperature. The results indicate that in the presence of syngas, with 1-butene as feed, more isomerization product (i.e. 2-butene) is detected in comparison with the hydroformylation products, whereas with 2-butene as the feed, the hydroformylation is superior to isomerization. Due to the equilibrium limit between 1-butene and 2-butene, the increase of temperature shows a great positive effect on the isomerization reaction. Furthermore, under the catalysis of Rh-BIPHEPHOS, more n-pentanal is always formed than i-pentanal, as the larger bite angle of BIPHEPHOS restricts the intermediate rearrangement in the formation of i-pentanal.
  • loading
  • [1]
    ZHANG Y, TORKER S, SIGNST M, BREGOVIC N, BINUCLEAR P D. Pd(I)-Pd(I) catalysis assisted by iodide ligands for selective hydroformylation of alkenes and alkynes[J]. J Am Chem Soc,2020,142(42):18251−18265. doi: 10.1021/jacs.0c09254
    [2]
    PEDERSEN S K, GUDMUNDSSON H G, NIELLSEN D U, DONSLUND B S, HAMMERSHOJ H C D, DAASBJERG K, SKRYDSTRUP T. Main element chemistry enables gas-cylinder-free hydroformylations[J]. Nat Catal,2020,3(10):1−8.
    [3]
    HUANG N, LIU B, LAN X, WANG T. Insights into the bimetallic effects of a RhCo catalyst for ethene hydroformylation: experimental and DFT investigations[J]. Ind Eng Chem Res,2020,59(42):18771−18780. doi: 10.1021/acs.iecr.0c03437
    [4]
    DANGAT Y, POPLI S, SUNOJ R B. Unraveling the importance of noncovalent interactions in asymmetric hydroformylation reactions[J]. J Am Chem Soc,2020,142(40):17079−17092.
    [5]
    JIANG W, CHEN Y, GAO L, SUN M, WANG X, LI Z, JI X ZHOU G, ZHOU H. Hydroformylation for reducing the olefin content in the FCC light gasoline with magnetic rhodium-catalysts[J]. Fuel,2020,279:118508−118514. doi: 10.1016/j.fuel.2020.118508
    [6]
    NETO D H C, DOS S A A M, SILVA D, JULIO C S, ROCHA W R, DIAS R P. Propene hydroformylation reaction catalyzed by HRh(CO)(BISBI): A Thermodynamic and kinetic analysis of the full catalytic cycle[J]. Eur J Inorg Chem,2020,(41):3907−3916.
    [7]
    RAGHUVANSHI K, ZHU C, RAMEZANI M, MENEGATTI S, SANTISO E E, MASON D, RODGERS J, JANKA M E, ABOLHASANI M. Highly efficient 1-octene hydroformylation at low syngas pressure: From single-droplet screening to continuous flow synthesis[J]. ACS Catal,2020,14(10):7535−7542.
    [8]
    ROBERT F, DETLEF S, AMMIN Borner. Applied hydroformylation (Review)[J]. Chem Rev,2012,112(11):5675−5732. doi: 10.1021/cr3001803
    [9]
    SLAUGH L H, MULLINEAUX RD. Novel hydroformylation catalysts[J]. J Organomet Chem,1968,13(2):469−477. doi: 10.1016/S0022-328X(00)82775-8
    [10]
    AGUADO-ULLATE S, BAKER J A, GONZALEZ-GONZALEZ V, MULLER C, HIRST J D, CARBO J J. A theoretical study of the activity in Rh-catalysed hydroformylation: the origin of the enhanced activity of the pi-acceptor phosphinine ligand[J]. Catal Sci Technol,2014,4(4):979−987. doi: 10.1039/C3CY00956D
    [11]
    KUMAR M, CHAUDHARI R V, SUBRAMMANIAM B, JACKSON T A. Ligand effects on the regioselectivity of rhodium-catalyzed hydroformylation: Density functional calculations illuminate the role of long-range noncovalent interactions[J]. Org,2014,33(16):4183−4191.
    [12]
    WANG Z, YANG Y. Rh-catalyzed highly regioselective hydroformylation to linear aldehydes by employing porous organic polymer as a ligand[J]. RSC Adv,2020,10(49):29263−29267.
    [13]
    MALINOWSKI J, ZYCH D, JACEWICZ D, GAWDZIK B, DRZEZDZON J. Application of coordination compounds with transition metal ions in the chemical industry--a review[J]. Int J Mol Sci,2020,21(15):5443−5468.
    [14]
    JIANG W, CHU J, YANG J, ZANG P, GAO L, ZHOU G, ZHOU H, WEI H. The influence of different monodentate P-ligands mixtures on Rh-catalyzed 1-butene hydroformylation Chinese[J]. J Chem Eng,2018,(26):1943−1948.
    [15]
    WANG Y, YAN L, LI C, JIANG M, ZHAO Z, HOU G, DING Y. Heterogeneous Rh/CPOL-BP& P(OPh)3 catalysts for hydroformylation of 1-butene: The formation and evolution of the active species[J]. J Catal,2018,368:197−206. doi: 10.1016/j.jcat.2018.10.012
    [16]
    WANG W, WANG D, YANG Q, AN H, ZHAO X, WANG Y. Silica-immobilized acid ionic liquid: An efficient catalyst for pentanal self-condensation[J]. J Chem Technol Biot,2020,95(11):2964−2972. doi: 10.1002/jctb.6457
    [17]
    WANG Y, YAN L, LI C, JIANG M. Highly efficient porous organic copolymer supported Rh catalysts for heterogeneous hydroformylation of butenes[J]. Appl Catal A: Gen,2018,551(5):98−105. doi: 10.1016/j.apcata.2017.12.013
    [18]
    LI X, ZHANG K, QIN L, MA H. Kinetic studies of hydroformylation of 1-butene using homogeneous Rh/PPh3 complex catalyst[J]. Mol Catal,2017,443:270−279.
    [19]
    WU L, FLEISCHER I, JACKSTELL R, PROFIR I, FRANKE R, BELLER M. Ruthenium-catalyzed hydroformylation/reduction of olefins to alcohols: Extending the scope to internal alkenes[J]. J Am Chem Soc,2013,135(38):14306−14312. doi: 10.1021/ja4060977
    [20]
    ZHANG Z, CHEN C, WANG Q, HAN Z, DONG X, ZHANG X. New tetraphosphite ligands for regioselective linear hydroformylation of terminal and internal olefins[J]. RSC Adv,2016,6(18):14559−14562. doi: 10.1039/C5RA23683E
    [21]
    HOOD D, JOHNSON R, CARPENTER A, YOUNKER J, VINYARD D, STANLEY G. Highly active cationic cobalt(II) hydroformylation catalysts[J]. Sci,2020,367(6477):542−548. doi: 10.1126/science.aaw7742
    [22]
    ZHANG L, LI C, FU H, YUAN M, LI R, CHEN H. Synthesis of a new biphophorus ligand and its application in hydroformylation of 2-butene[J]. Chin J Catal,2011,32(2):299−302.
    [23]
    VILCHES-HERRERA M, DOMKE L, BOEMER A. Isomerization-hydroformylation tandem reactions[J]. ACS Catal,2014,6(4):1706−1724.
    [24]
    GAIDE T, JOERKE A, SCHLIPKOETER K Er, HAMEL C, SEIDEL-MORGENSTEM A, BEHR A, VORHOLT A. Isomerization/hydroformylation tandem reaction of a decene isomeric mixture with subsequent catalyst recycling in thermomorphic solvent systems[J]. Appl Catal A: Gen,2017,532(25):50−56. doi: 10.1016/j.apcata.2016.12.011
    [25]
    JOERKE A, GAIDE T, BEHR A, VORHOLT, SEIDEL-NORGENSTEM A, HAMEL C. Hydroformylation and tandem isomerization-hydroformylation of n-decenes using a rhodium-BiPhePhos catalyst: Kinetic modeling, reaction network analysis and optimal reaction control[J]. Chem Eng J,2017,313(1):382−397. doi: 10.1016/j.cej.2016.12.070
    [26]
    TAY D W P, NOBBS J D, ROMAIN C, WHITE A J P, AITIPAMULA S, VANMURS M, BRITOVSEK G J P. Gem-dialkyl effect in diphosphine ligands: Synthesis, coordination behavior, and application in pd-catalyzed hydroformylation[J]. ACS Catal,2020,1(10):663−671.
    [27]
    GAMEDE N V, KAPFUNDE T A, OCANSEY E, NGUMBU D M, DARKWA J, MAKHUBELA B C E. N’N’N pincer and N’N bidentate(pyrazolylpyridyl) Rh(I) complexes as catalyst precursors for hydroformylation of olefins[J]. Transit Metal Chem,2020,(45):1−8.
    [28]
    LU L, FUENTES J A, JANKA M E, FONTENOT K J, CLARKE M L. High iso aldehyde selectivity in the hydroformylation of short-chain alkenes[J]. Angew Chem Int Ed,2019,58(7):2120−2124.
    [29]
    DEVON T J, PHOLLIPS G W, PUCKETTE T A, STAVINOHA J L, VANDERBILT J J. Chelate ligands for low pressure hydroformylation catalyst and process employing same: Eastman Kodak Company, US, 4694109 A[P]. 1989-07-25.
    [30]
    HERRMANN W A, SCHMID R, KOHLPAINTNER C W, PRIERMEIER T. Structure and metal coordination of the diphosphine 2, 2'-bis((diphenylphosphino)methyl)-1, 1'-binaphthyl (NAPHOS)[J]. Org,1995,14(4):1961−1968.
    [31]
    CASEY C P, WHITEKER G T, MELVILLE M G, PEROVICH L M, GAVNEY J A, POWELL D R. Diphosphines with natural bite angles near 120-degrees increase selectivity for normal-aldehyde formation in rhodium-catalyzed hydroformylation[J]. J Am Chem Soc,1992,114(14):5535−5543.
    [32]
    LEEUWEN P W N M, KAMER P C J, REEK J N H, DIERKES P. Ligand bite angle effects in metal-catalyzed C−C Bond Formation[J]. Chem Rev,2020,100(8):2741−2770.
    [33]
    VANDERVEEN L A, KEEVEN P H, SCHOEMAKKER G C, REEK J N H, KAMER P C J, VANLEEUWEN P W N M, LUTZ M, SPEK A L. Origin of the bite angle effect on rhodium diphosphine catalyzed hydroformylation[J]. Org,2000,19(5):872−883.
    [34]
    VILCHES-HERRERA M, CONCHA-PUELLES M, CARVAJAL N, MOLINA J, SANTANDER R, CAROLI REZENDE M, LUHR S. Influence of the bite natural angle of bidentate diphosphine ligands in the syngas-free branched hydroformylation of beta-functionalized olefins[J]. Catal Commun,2018,116(13):62−66.
    [35]
    HASTINGS S D, CAGLE E C, TOTSCH T R, TYUS S D, GRAY G M. Comparative study of novel phosphordiamidite and phosphite ligands used in alkene hydroformylation; synthesis, characterization, metalation, and catalytic evaluation[J]. Eur J Inorg Chem,2018,2018(37):4158−4174.
    [36]
    VOGL C, PAETZOLD E, FISCHER C, KRAGL U, MOL J. Highly selective hydroformylation of internal and terminal olefins to terminal aldehydes using a rhodium-BIPHEPHOS-catalyst system[J]. J Mol Catal A: Chem,2005,232(1/2):41−44.
    [37]
    BEHR A, OBST D, SCHULTE C, SCHOSSER T. Highly selective tandem isomerization-hydroformylation reaction of trans-4-octene to n-nonanal with rhodium-BIPHEPHOS catalysis[J]. J Mol Catal A: Chem,2003,206(1/2):179−184. doi: 10.1016/S1381-1169(03)00461-8
    [38]
    JORKE A, SEIDEL-MORGENSTERN A, HAMEL C. Rhodium-BiPhePhos catalyzed hydroformylation studied by operando FTIR spectroscopy: Catalyst activation and rate determining step[J]. J Mol Catal A: Chem,2017,426:10−14.
    [39]
    CHADA J P, XU Z, ZHAO D, WATSON R B, BRAMMER M, BIGI M, ROSENFELD D C, HERMANS I, HUBER G W. Oligomerization of 1-butene over carbon-supported CoOx and subsequent isomerization/hydroformylation to n-nonanal[J]. Catal Commun,2018,114:93−97.
    [40]
    LOGEMANN M, MARINKOVIC J M, SCHOERNER M, GARCIA-SUAREZ E J, HECHT C, FRANKE R, WESSLING M, RIISAGER A, FEHRMANN R, HAUMANN M. Continuous gas-phase hydroformylation of but-1-ene in a membrane reactor by supported liquid-phase (SLP) catalysis[J]. Green Chem,2020,22(17):5691−5700. doi: 10.1039/D0GC01483D
    [41]
    WANG S, ZHANG J, PENG F, TANG Z, SUN Y. Enhanced hydroformylation in a continuous flow microreactor system[J]. Ind Eng Chem Res,2020,59(1):88−98. doi: 10.1021/acs.iecr.9b05350
    [42]
    HAUMANN M, JAKUTTIS M, FRANKE R, SCHOENWEIZ A, WASSERSCHEID P. Continuous gas-phase hydroformylation of a highly diluted technical C4 feed using supported ionic liquid phase catalysts[J]. ChemCatChem,2011,3(11):1822−1827. doi: 10.1002/cctc.201100117
    [43]
    EVANS D, OSBORN J A, WILKINSON G. Hydroformylation of alkenes by use of rhodium complex catalysts[J]. J Chem Soc A,1968,3133−3142.
    [44]
    LEEUWEN P W M V, CHADWICK J C. Homogeneous Catalysts: Activity–Stability–Deactivation[M]. Weinheim: Wiley-VCH Verlag & Co. KGaA, 2011, 213−278.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (333) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return