Volume 50 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
LIU Mu-yao, WANG Jian-yun, DUAN Lian, LIU Xian, ZHANG Lei. Nickel oxide modified C3N5 photocatalyst for enhanced hydrogen evolution performance[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 243-249. doi: 10.1016/S1872-5813(21)60166-4
Citation: LIU Mu-yao, WANG Jian-yun, DUAN Lian, LIU Xian, ZHANG Lei. Nickel oxide modified C3N5 photocatalyst for enhanced hydrogen evolution performance[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 243-249. doi: 10.1016/S1872-5813(21)60166-4

Nickel oxide modified C3N5 photocatalyst for enhanced hydrogen evolution performance

doi: 10.1016/S1872-5813(21)60166-4
Funds:  The project was supported by the Teaching Reform and Innovation Program of Higher Education Institutions in Shanxi (2020061) and the Teaching Reform and Innovation Program of Taiyuan University of Technology (2019013)
More Information
  • Corresponding author: Tel: 13111006822; 18435162096, E-mail: duanlian@tyut.edu.cnliuxian1104@126.com
  • Received Date: 2021-06-09
  • Rev Recd Date: 2021-08-12
  • Available Online: 2021-10-20
  • Publish Date: 2022-02-12
  • Recently, a new carbon nitride (C3N5) photocatalyst has attracted much attention due to its excellent light harvesting and unique 2D structure. However, high recombination rates of electron-hole pairs of bulk C3N5 serious affect the photocatalytic performance. Herein, nickel oxide (NiO) modified C3N5 p-n junctions photocatalyst was synthesized by a facile hydrothermal method. Results indicated that the 9-Ni/C3N5 nanosheet photocatalyst showed excellent hydrogen production efficiency under visible light. The hydrogen production rate reached 357 μmol/(g·h), which was 107-fold higher than that of pristine C3N5. The high catalytic performace was attributed to the 9-Ni/C3N5 p-n junctions which could efficiently promote photogenerated electron-hole pair separation and thus promote the hydrogen evolution reaction.
  • loading
  • [1]
    LIAO G F, GONG Y, ZHANG L, GAO H Y, YANG G J, FANG B Z. Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light[J]. Energy Environ Sci,2019,12(7):2080−2147. doi: 10.1039/C9EE00717B
    [2]
    HU B, CAI F P, CHEN T J, FAN M S, SONG C J, SHI W D. Hydrothermal synthesis g-C3N4/nano-InVO4 nanocomposites and enhanced photocatalystic activity for hydrogen production under visible light irradiation[J]. ACS Appl Mater Interfaces,2015,7(33):18247−18256. doi: 10.1021/acsami.5b05715
    [3]
    MAO Z Y, CHEN J J, YANG Y F, WANG D J, BIE L J, FAHLMAN B D. Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution[J]. ACS Appl Mater Interfaces,2017,9(14):12427−12435. doi: 10.1021/acsami.7b00370
    [4]
    YE S, WANG R, WU M Z, YUAN Y P. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction[J]. Appl Surf Sci,2015,358:15−17. doi: 10.1016/j.apsusc.2015.08.173
    [5]
    LI M L, ZHANG L X, FAN X Q, ZHOU Y J, WU M Y, SHI J L. Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composites under visible light[J]. J Mater Chem A,2015,3(9):5189−5196. doi: 10.1039/C4TA06295G
    [6]
    FENG W H, ZHANG L X, FANG J Z, LU S Y, WU S X, CHEN Y, FANG Z Q. Improved photodegradation efficiency of 2, 4-DCP through a combined Q3Fe(III)-decorated porous g-C3N4/H2O2 system[J]. Water Air Soil Poll,2017,228(9):373. doi: 10.1007/s11270-017-3564-5
    [7]
    QIAN X F, WU Y W, KAN M, FANG M Y, YUE D T, ZENG J, ZHAO Y X. FeOOH quantum dots coupled g-C3N4 for visible light driving photo- Fenton degradation of organic pollutants[J]. Appl Catal B: Environ,2018,237:513−520. doi: 10.1016/j.apcatb.2018.05.074
    [8]
    CUI Y J, ZHANG G G, LIN Z Z, WANG X C. Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation[J]. Appl Catal B: Environ,2016,181:413−419. doi: 10.1016/j.apcatb.2015.08.018
    [9]
    DONG G H, ZHAO K, ZHANG L Z. Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4[J]. Chem Commun,2012,48:6178−6180. doi: 10.1039/c2cc32181e
    [10]
    WANG H Y, LI M X, LU Q J, CEN Y M, ZHANG Y Y, YAO S Z. A mesoporous rod-like g-C3N5 synthesized by salt-guided strategy: as a superior photocatalyst for degradation of organic pollutant[J]. ACS Sustainable Chem Eng,2019,7(1):625−631. doi: 10.1021/acssuschemeng.8b04182
    [11]
    QI S Y, FAN Y C, WANG J R, SONG X H, LI W F, ZHAO M W. Metal-free highly efficient photocatalysts for overall water splitting: C3N5 multilayers[J]. Nanoscale,2020,12(1):306−315. doi: 10.1039/C9NR08416A
    [12]
    KUMAR P, VAHIDZADEH E, THAKUR U K, KAR P, ALAM K M, GOSWAMI A, MANDI N, CUI K, BERNARD G M, MICHAELIS V K, SHANKAR K. C3N5: A low band gap semiconductor containing an azo-linked carbon nitride framework for photocatalytic, photovoltaic and adsorbent applications[J]. J Am Chem Soc,2019,141(13):5415−5436. doi: 10.1021/jacs.9b00144
    [13]
    JIN Z B, WEI T T, HUANG J Y, LI F Y, YANG Y, XU L. Fabrication of direct Z-scheme heterojunction between Zn0.5Cd0.5S and N-rich graphite carbon nitride for boosted H2 production[J]. Int J Hydrogen Energy,2020,45(43):22711−22721. doi: 10.1016/j.ijhydene.2020.06.093
    [14]
    VADIVEL S, HARIGANESH S, PAUL B, MAMBA G, PUVIARASU P. Highly active novel CeTi2O6/g-C3N5 photocatalyst with extended spectral response towards removal of endocrine disruptor 2, 4-dichlorophenol in aqueous medium[J]. Colloids Surf A,2020,592(5):124583.
    [15]
    LI M X, LU Q J, LIU M L, YIN P, WU C Y, LI H T, ZHANG Y Y, YAO S Z. Photoinduced charge separation via the double-electron transfer mechanism in nitrogen vacancies g-C3N5/BiOBr for the photoelectrochemical nitrogen reduction[J]. ACS Appl Mater Interfaces,2020,12(34):38266−38274. doi: 10.1021/acsami.0c11894
    [16]
    SHI H L, BI J G, BAI C P, WU J B, XU Y, HAN Y, ZHANG X. Nickel ammine complex-derived NiO modified g-C3N4 composites with enhanced visible-light photocatalytic H2 evolution performance[J]. ChemistrySelect,2019,4(27):8095−8103. doi: 10.1002/slct.201901813
    [17]
    LIU J N, JIA Q H, LONG J L, WANG X X, GAO Z W, GU Q. Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C3N4 photocatalyst[J]. Appl Catal B: Environ,2018,222:35−43. doi: 10.1016/j.apcatb.2017.09.073
    [18]
    HU C, TENG H. Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting[J]. J Catal,2010,272(1):1−8. doi: 10.1016/j.jcat.2010.03.020
    [19]
    CHEN C, LIAO C, HSU K, WU Y, WU J. P-N junction mechanism on improved NiO/TiO2 photocatalyst[J]. Catal Commun,2011,12(14):1307−1310. doi: 10.1016/j.catcom.2011.05.009
    [20]
    LIN H, CHEN Y, CHEN Y. Water splitting reaction on NiO/InVO4 under visible light irradiation[J]. Int J Hydrogen Energy,2007,32(1):86−92. doi: 10.1016/j.ijhydene.2006.04.007
    [21]
    SREETHAWONG T, SUZUKI Y, YOSHIKAWA S. Photocatalytic evolution of hydrogen over mesoporous supported NiO photocatalyst prepared by single-step sol-gel process with surfactant template[J]. Int J Hydrogen Energy,2005,30(10):1053−1062. doi: 10.1016/j.ijhydene.2004.09.007
    [22]
    IWASZUK A, NOLAN M, JIN Q, FUJISHIMA M, TADA H. Origin of the visible-light response of nickel(II) oxide cluster surface modified titanium(IV) dioxide[J]. J Phys Chem C,2013,117(6):2709−2718. doi: 10.1021/jp306793r
    [23]
    FU Y, LIU C A, ZHU C, WANG H, DOU Y, SHI W, SHAO M, HUANG H, LIU Y, KANG Z. High-performance NiO/g-C3N4 composites for visible-light-driven photocatalytic overall water splitting[J]. Inorg Chem Front,2018,5(7):1646−1652. doi: 10.1039/C8QI00292D
    [24]
    TZVETKOV G, TSVETKOV M, SPASSOV T. Ammonia-evaporation-induced construction of three-dimensional NiO/g-C3N4 composite with enhanced adsorption and visible light-driven photocatalytic performance[J]. Superlattice Microst,2018,119:122−133. doi: 10.1016/j.spmi.2018.04.048
    [25]
    LIU T, YANG G, WANG W, WANG C, WANG M, SUN X, XU P, ZHANG J. Preparation of C3N5 nanosheets with enhanced performance in photocatalytic methylene blue (MB) degradation and H2-evolution from water splitting[J]. Environ Res,2020,188:109741. doi: 10.1016/j.envres.2020.109741
    [26]
    LUO B, SONG R, GENG J, JING D, ZHANG Y. Facile preparation with high yield of a 3D porous graphitic carbon nitride for dramatically enhanced photocatalytic H2 evolution under visible light[J]. Appl Catal B: Environ,2018,238(15):294−301.
    [27]
    LIN X, XU D, ZHENG J, SONG M, CHE G, WANG Y, YANG Y, LIU C, ZHAO L, CHANG L. Graphitic carbon nitride quantum dots loaded on leaf-like InVO4/BiVO4 nano-heterostructures with enhanced visible-light photocatalytic activity[J]. J Alloys Compd,2016,688(15):891−898.
    [28]
    WANG X, MA Z, CHAI L, XU L, ZHU Z, HU Y, QIAN J, HUANG S. MOF derived N-doped carbon coated CoP particle/carbon nanotube composite for efficient oxygen evolution reaction[J]. Carbon,2019,141:643−651. doi: 10.1016/j.carbon.2018.10.023
    [29]
    KONG L, DONG Y, JIANG P, WANG G, ZHANG H, ZHAO N. Light-assisted rapid preparation of a Ni/g-C3N4 magnetic composite for robust photocatalytic H2 evolution from water[J]. J Mater Chem A,2016,4(25):9998−10007. doi: 10.1039/C6TA03178A
    [30]
    HAN Q, WANG B, ZHAO Y, HU C, QU L. A graphitic-C3N4 “seaweed” architecture for enhanced hydrogen evolution[J]. Angew Chem Int Ed,2015,54(39):11433−11437. doi: 10.1002/anie.201504985
    [31]
    JIANG Z, CHEN X, LU J, LI Y, WEN T, ZHANG L. Ultrathin Ni(II)-based coordination polymer nanosheets as a co-catalyst for promoting photocatalytic H2 production[J]. Chem Commun,2019,55(46):6499. doi: 10.1039/C9CC02680K
    [32]
    WEN J, XIE J, ZHANG H, ZHANG A, LIU Y, CHEN X, LI X. Constructing multifunctional metallic Ni interface layers in the g-C3N4 nanosheets/amorphous NiS heterojunctions for efficient photocatalytic H2 generation[J]. ACS Appl Mater Interfaces,2017,9(16):14031−14042. doi: 10.1021/acsami.7b02701
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (339) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return