Volume 50 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
ZHAO Yan-nan, FAN Su-bing, MA Qing-xiang, ZHANG Jian-li, ZHAO Tian-sheng. Methanol converting to propylene on weakly acidic and hierarchical porous MFI zeolite[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 210-217. doi: 10.1016/S1872-5813(21)60175-5
Citation: ZHAO Yan-nan, FAN Su-bing, MA Qing-xiang, ZHANG Jian-li, ZHAO Tian-sheng. Methanol converting to propylene on weakly acidic and hierarchical porous MFI zeolite[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 210-217. doi: 10.1016/S1872-5813(21)60175-5

Methanol converting to propylene on weakly acidic and hierarchical porous MFI zeolite

doi: 10.1016/S1872-5813(21)60175-5
Funds:  The project was supported by the East-West Cooperation Project of Ningxia Key R&D Plan (2017BY063).
More Information
  • Corresponding author: zhaots@nxu.edu.cn
  • Received Date: 2021-05-19
  • Rev Recd Date: 2021-06-23
  • Available Online: 2021-10-29
  • Publish Date: 2022-02-12
  • H-[B,Al]-ZSM-5 zeolites were synthesized with glucose as assistant template to catalyze methanol converting toward propylene. The superior catalytic performance in terms of the propylene selectivity and the activity longevity was related to high ratio of weak acid to strong acid for favorable production of propylene and to high mesoporosity for improved diffusion of reactants and prevention from fast coking. More framework Al siting in the straight or sinusoidal channels of the MFI zeolite could also enhance the propylene/ethylene ratio due to the promotional effect on propylene formation. Low weak acid density was conducive to the production of high propylene/ethylene ratio. With the B/Al ratio of 2 and the (Al2+B2)/Si ratio of 0.01, HZ5-G-2B was applied in the methanol to propylene reaction at CH3OH/H2O (1∶1.2) WHSV of 1.8 h−1 and 480 °C. Propylene selectivity of 51.6%, the ${\rm{C}}_{{2-4}}^ {=} $ selectivity of 83.7% and complete conversion of methanol were achieved. The propylene/ethylene ratio was 2. The catalytic activity kept stable for 580 h.
  • loading
  • [1]
    HAW J F, SONG W, MARCUS D M, NICHOLAS J B. The mechanism of methanol to hydrocarbon catalysis[J]. Acc Chem Res,2003,36:317−326. doi: 10.1021/ar020006o
    [2]
    INOUE M, DHUPATEMIYA P, PHATANASRI S, INUI T. Synthesis course of the Ni-SAPO-34 catalyst for methanol-to-olefin conversion[J]. Microporous Mesoporous Mater,1999,28(1):19−24. doi: 10.1016/S1387-1811(98)00278-9
    [3]
    ZHAO T S, TAKEMOTO T, TSUBAKI N. Direct synthesis of propylene and light olefins from dimethyl ether catalyzed by modified H-ZSM-5[J]. Catal Commun,2006,7(9):647−650. doi: 10.1016/j.catcom.2005.11.009
    [4]
    LEE K Y, LEE S W, IHM S K. Acid strength control in MFI zeolite for the methanol-to-hydrocarbons(MTH) reaction[J]. Ind Eng Chem Res,2014,53(24):10072−10079.
    [5]
    PALČIČ A, ORDOMSKY V V, QIN Z, GEORGIEVA V, VALTCHEV V. Tuning zeolite properties for highly efficient synthesis of propylene from methanol[J]. Chem-Eur J,2018,24(50):13136−13149. doi: 10.1002/chem.201803136
    [6]
    UNNEBERG E, KOLBOE S. H--ZSM-5 as catalyst for methanol reactions[J]. Appl Catal A: Gen,1995,124:345−354. doi: 10.1016/0926-860X(95)00005-4
    [7]
    CHU C T-W, KUEHL G H, LAGO R M, CHANG C D. lsomorphous substitution in zeolite frameworks II catalytic properties ofZSM-5[J]. J Catal,1985,89:1569−1571.
    [8]
    YANG Y, SUN C, DU J, YUE Y, HUA W, ZHANG C, SHEN W, XU H. The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction[J]. Catal Commun,2012,24(26):44−47.
    [9]
    YARIPOUR F, SHARIATINIA Z, SAHEBDELFAR S, IRANDOUKHT A. Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction[J]. Microporous Mesoporous Mater,2015,203:41−53.
    [10]
    LIANG T, CHEN J, QIN Z, LI J, WANG P, WANG S, WANG G, DONG M, FAN W, WANG J. Conversion of methanol to olefins over H-ZSM-5 zeolite: Reaction pathway is related to the framework Aluminum siting[J]. ACS Catal,2016,6:7311−7325. doi: 10.1021/acscatal.6b01771
    [11]
    TAO J, ZHANG J, FAN S, MA Q, GAO X, ZHAO T S. Effects of boron modification on the activity of HZSM-5 toward MTP[J]. J Fuel Chem Technol,2020,48(9):1105−1111. doi: 10.1016/S1872-5813(20)30074-8
    [12]
    CUI N, GUO H, ZHOU J, LI L, GUO L, HUA Z. Regulation of framework Al distribution of high-silica hierarchically structured ZSM-5 zeolites by boron-modification and its effect on materials catalytic performance in methanol-to-propylene reaction[J]. Microporous Mesoporous Mater,2020,306:110411. doi: 10.1016/j.micromeso.2020.110411
    [13]
    HU Z, ZHANG H, WANG L, ZHANG H, ZHANG Y, XU H, SHEN W, TANG Y. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction[J]. Catal Sci Technol,2014,4(9):2891−2895. doi: 10.1039/C4CY00376D
    [14]
    DING J, JIA Y, CHEN P, ZHAO G, LIU Y, LU Y. Thin-felt hollow-B-ZSM-5/SS-fiber catalyst for methanol-to-propylene: toward remarkable stability improvement from mesoporosity-dependent diffusion enhancement[J]. Chem Eng J, 2019, 361: 588−598.
    [15]
    KIM J, CHOI M, RYOO R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J]. J Catal,2010,269(1):219−228.
    [16]
    TAO J, ZHANG J, FAN S, ZHAO T S. Cocrystalline synthesis of ZSM-5/ZSM-11 and catalytic activity for methanol to propylene[J]. Cryst Res Technol,2020,55:2000027. doi: 10.1002/crat.202000027
    [17]
    LIU H, ERNST H, FREUDDE D, SCHEFFLER F, SCHWIEGER W. In situ 11B MAS NMR study of the synthesis of a boron-containing MFI type zeolite[J]. Microporous Mesoporous Mater,2002,54(3):319−330. doi: 10.1016/S1387-1811(02)00392-X
    [18]
    CHEN T H, WOUTERS B H, GROBET P J. Aluminium coordinations in zeolite mordenite by 27Al multiple quantum MAS NMR spectroscopy[J]. Eur J Inorg Chem,2000,2:281−285.
    [19]
    YOKOI T, MOCHIZUKI H, NAMBA S, KONDO J N, TATSUMI T. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties[J]. J Phys Chem C,2015,119(27):15303. doi: 10.1021/acs.jpcc.5b03289
    [20]
    LI J, MA H, CHEN Y, XU Z, LI C, YING W. Conversion of methanol to propylene over hierarchical HZSM-5: Effect of Al spatial distribution[J]. Chem Commun,2018,54:6032−6035. doi: 10.1039/C8CC02042F
    [21]
    RODRÍGUEZ-GONZÁLEZ L, HERMES F, BERTMER M, RODRÍGUEZ-CASTELLÓN E, JIMÉNEZ-LÓPEZ A, SIMON U. The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy[J]. Appl Catal A: Gen,2007,328(2):174−182.
    [22]
    CHU C T-W, CHANG C D. Isomorphous substitution in zeolite frameworks. 1. acidity of surface hydroxyls in [B]-, [Fe]-, [Ga]-, and [AI]-ZSM-5[J]. J Phys Chem,1985,89(30):1569−1571.
    [23]
    CHANG C D, CHU C T-W, SOCHA R F. Methanol conversion to olefins over ZSM-5 I. effect of temperature and zeolite SiO2/A12O3[J]. J Catal,1984,86(2):289−296.
    [24]
    ZHU Q, KONDO J N, SETOYAMA T, YAMAGUCHI M, DOMEN K, TATSUMI T. Activation of hydrocarbons on acidic zeolites: superior selectivity of methylation of ethene with methanol to propene on weakly acidic catalysts[J]. Chem Commun,2008,71(41):5164−5166.
    [25]
    KIM S, PARK G, WOO M H, KWAK G, KIM S K. Control of hierarchical structure and framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion[J]. ACS Catal,2019,9:2880−2892.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (267) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return