Volume 50 Issue 9
Oct.  2022
Turn off MathJax
Article Contents
HAO Ying-dong, LIU Shuang, SUN Nan-nan, WEI Wei. Photocatalytic oxidation of CH4 to oxygenates on Fe(III)Ox/ZnO[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1160-1166. doi: 10.1016/S1872-5813(22)60016-1
Citation: HAO Ying-dong, LIU Shuang, SUN Nan-nan, WEI Wei. Photocatalytic oxidation of CH4 to oxygenates on Fe(III)Ox/ZnO[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1160-1166. doi: 10.1016/S1872-5813(22)60016-1

Photocatalytic oxidation of CH4 to oxygenates on Fe(III)Ox/ZnO

doi: 10.1016/S1872-5813(22)60016-1
Funds:  The project was supported by Shanghai Science and Technology Committee (19YF1452800, 19ZR1463500)
  • Received Date: 2022-02-09
  • Accepted Date: 2022-04-12
  • Rev Recd Date: 2022-03-15
  • Available Online: 2022-04-28
  • Publish Date: 2022-10-21
  • A series of nFe(III)Ox/ZnO photocatalysts with different Fe contents was prepared by impregnation method, and the samples were characterized by XRD, N2 physisorption, TEM, XPS, UV-vis and PL. It was found that by changing the concentration of Fe species in the impregnation solution, the Fe content in the final sample could be properly adjusted. Within the scope of this work, the loading of Fe does not cause significant changes in the phase, morphology, and porous structure of the ZnO support. However, the electronic state of the catalyst surface was altered considerably, with more O-vacancies were introduced. Fe species enhanced the separation of photo-induced electron-hole pairs, which was responsible to improve the performance of photocatalytic CH4 conversion. Through the optimization of solvent volume, H2O2 concentration and reaction time, the 0.1Fe(III)Ox/ZnO sample showed the best performance over which the yield and selectivity of liquid oxidation products (CH3OH, CH3OOH, HCHO) was 5443 μmol/(gcat·h) and 99%, respectively. Based on radical quenching experiments, it was found that the ·${{\rm{O}}_2^-} $ radicals derived from H2O2 played a major role for the activation of CH4 to ·CH3.
  • loading
  • [1]
    BP. BP Statistical Review of World Energy 2021, 2021.
    [2]
    刘华, 刘晓艳, 王爱琴, 张涛. 单原子催化甲烷直接转化的研究进展[J]. 中国科学:化学,2021,51(2):175−187. doi: 10.1360/SSC-2020-0191

    (LIU Hua, LIU Xiao-yan, WANG Ai-qin, ZHANG Tao. Direct conversion of methane on single-atoms catalysts[J]. Sci Sin (Chim),2021,51(2):175−187. doi: 10.1360/SSC-2020-0191
    [3]
    TANG Y, LI Y, TAO F. Activation and catalytic transformation of methane under mild conditions[J]. Chem Soc Rev,2022,51(1):376−423. doi: 10.1039/D1CS00783A
    [4]
    SONG H, MENG X G, WANG Z J, LIU H M, YE J H. Solar-energy-mediated methane conversion[J]. Joule,2019,3(7):1606−1636. doi: 10.1016/j.joule.2019.06.023
    [5]
    SCHWACH P, PAN X L, BAO X H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects[J]. Chem Rev,2017,117(13):8497−8520. doi: 10.1021/acs.chemrev.6b00715
    [6]
    GANGADHARAN P, KANCHI K C, LOU H H. Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane[J]. Chem Eng Res Des,2012,90(11):1956−1968. doi: 10.1016/j.cherd.2012.04.008
    [7]
    CABALLERO A, PEREZ P J. Methane as raw material in synthetic chemistry: The final frontier[J]. Chem Soc Rev,2013,42(23):8809−8820. doi: 10.1039/c3cs60120j
    [8]
    ZHOU L A, MARTIREZ J M P, FINZEL J, ZHANG C, SWEARER D F, TIAN S, ROBATJAZI H, LOU M H, DONG L L, HENDERSON L, CHRISTOPHER P, CARTER E A, NORDLANDER P, HALAS N J. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts[J]. Nat Energy,2020,5(1):61−70. doi: 10.1038/s41560-019-0517-9
    [9]
    LI Z H, YI Z G, LI Z S, ZOU Z G. Photocatalytic and thermocatalytic conversion of methane[J]. Sol Rrl,2021,5(6):2000596. doi: 10.1002/solr.202000596
    [10]
    TANG P, ZHU Q, WU Z, MA D. Methane activation: The past and future[J]. Energy Environ Sci,2014,7(8):2580−2591. doi: 10.1039/C4EE00604F
    [11]
    VILLA K, MURCIA-LOPEZ S, MORANTE J R, ANDREU T. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol[J]. Appl Catal B: Environ,2016,187:30−36. doi: 10.1016/j.apcatb.2016.01.032
    [12]
    SONG H, MENG X G, WANG S Y, ZHOU W, SONG S, KAKO T, YE J H. Selective photo-oxidation of methane to methanol with oxygen over dual-cocatalyst-modified titanium dioxide[J]. ACS Catal,2020,10(23):14318−14326. doi: 10.1021/acscatal.0c04329
    [13]
    FAN Y Y, ZHOU W C, QIU X Y, LI H D, JIANG Y H, SUN Z H, HAN D X, NIU L, TANG Z Y. Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate[J]. Nat Sustain,2021,4:509−515. doi: 10.1038/s41893-021-00682-x
    [14]
    LI Z, PAN X, YI Z. Photocatalytic oxidation of methane over CuO-decorated ZnO nanocatalysts[J]. J Mater Chem,2019,7(2):469−475. doi: 10.1039/C8TA09592B
    [15]
    CHEN X B, SHEN S H, GUO L J, MAO S S. Semiconductor-based photocatalytic hydrogen generation[J]. Chem Rev,2010,110(11):6503−6570. doi: 10.1021/cr1001645
    [16]
    CHEN X X, LI Y P, PAN X Y, CORTIE D, HUANG X T, YI Z G. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts[J]. Nat Commun,2016,7:12273. doi: 10.1038/ncomms12273
    [17]
    SONG H, MENG X G, WANG S Y, ZHOU W, WANG X S, KAKO T, YE J H. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water[J]. J Am Chem Soc,2019,141(51):20507−20515. doi: 10.1021/jacs.9b11440
    [18]
    CHEN J, STEPANOVIC S, DRAKSHARAPU A, GRUDEN M, BROWNE W R. A Non-heme iron photocatalyst for light-driven aerobic oxidation of methanol[J]. Angew Chem Int Ed,2018,57(12):3207−3211. doi: 10.1002/anie.201712678
    [19]
    XIE J J, JIN R X, LI A, BI Y P, RUAN Q S, DENG Y C, ZHANG Y J, YAO S Y, SANKAR G, MA D, TANG J W. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species[J]. Nat Catal,2018,1(11):889−896. doi: 10.1038/s41929-018-0170-x
    [20]
    CHENG M, YANG L, LI H Y, BAI W, XIAO C, XIE, Y. Constructing charge transfer channel between dopants and oxygen vacancies for enhanced visible-light-driven water oxidation[J]. Nano Res,2021,14(10):3365−3371. doi: 10.1007/s12274-021-3605-7
    [21]
    ZHOU W C, QIU X Y, JIANG Y H, FAN Y Y, WEI S L, HAN D X, NIU L, TANG Z Y. Highly selective aerobic oxidation of methane to methanol over gold decorated zinc oxide via photocatalysis[J]. J Mater Chem,2020,8(26):13277−13284. doi: 10.1039/D0TA02793F
    [22]
    AGARWAL N, FREAKLEY S J, MCVICKER R U, ALTHAHBAN S M, DIMITRATOS, N, HE Q, MORGAN D J, JENKINS R L, WILLOCK D J, TAYLOR S H, KIELY C J, HUTCHINGS G J. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions[J]. Science,2017,358(6360):223−226. doi: 10.1126/science.aan6515
    [23]
    ZHU S, LI X D, PAN Z K, JIAO X C, ZHENG K, LI L, SHAO W W, ZU X L, HU J, ZHU J F, SUN Y F, XIE Y. Efficient photooxidation of methane to liquid oxygenates over ZnO nanosheets at atmospheric pressure and near room temperature[J]. Nano Lett,2021,21(9):4122−4128. doi: 10.1021/acs.nanolett.1c01204
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1851) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return