Volume 50 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
WANG Ming-yi, CHANG Zhi-wei, LIU Yue-hua, SHANGGUAN Ju, DU Wen-guang, MA Rui, WANG Qi, LIU Jun-jie, LIU Shou-jun, YANG Song. Bonding mechanism of binder and low-rank coal during carbonization[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1564-1572. doi: 10.1016/S1872-5813(22)60062-8
Citation: WANG Ming-yi, CHANG Zhi-wei, LIU Yue-hua, SHANGGUAN Ju, DU Wen-guang, MA Rui, WANG Qi, LIU Jun-jie, LIU Shou-jun, YANG Song. Bonding mechanism of binder and low-rank coal during carbonization[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1564-1572. doi: 10.1016/S1872-5813(22)60062-8

Bonding mechanism of binder and low-rank coal during carbonization

doi: 10.1016/S1872-5813(22)60062-8
Funds:  The project was supported by Shanxi Province Basic Research Plan (202103021223087), Shanxi Province Science and Technology Achievement Transformation Guidance Special Project (202104021301052), the National Natural Science Foundation of China (22169017) and sponsored by Mettler Toledo and Taiyuan Green Coke Energy Co., Ltd. (China).
More Information
  • Corresponding author: E-mail: 13303460889@163.comyangsong@tyut.edu.cn
  • Received Date: 2022-04-30
  • Accepted Date: 2022-06-04
  • Rev Recd Date: 2022-06-01
  • Available Online: 2022-09-23
  • Publish Date: 2022-12-28
  • Low-rank coal is rarely used in the industry of carbonized briquette due to its poor cohesiveness. In order to replace lump coal and utilize low-rank pulverized coal as much as possible in a carbonized briquette process, washing oil residue (WOR) was used as an enhanced binder to enhance the bonding strength of resulted carbonized briquette. The effects of blending ratio and carbonization temperatures on binding strength were investigated, and moreover, a reasonable bonding mechanism was deduced. The results showed that the best crushing strength was obtained when the weight ratio of WOR and low-rank coal is 3∶7 at 800 °C, and its crushing strength of M25 (M25) can reach to 97%, while the thermoplastic properties of WOR is thought to be responsible for the obtained good crushing strength, where WOR can be softened and coated on the surface of coal particles during carbonization, and then a coal-binder interface can be formed, resulting in the loose inert coal particles can be combined and the strength of coke is improved significantly.
  • loading
  • [1]
    WANG P Q, WANG C A, YUAN M B, WANG C W, ZHANG J P, DU Y B, TAO Z C, CHE D F. Experimental evaluation on co-combustion characteristics of semi-coke and coal under enhanced high-temperature and strong-reducing atmosphere[J]. Appl Energy,2020,260:114203−114203. doi: 10.1016/j.apenergy.2019.114203
    [2]
    CAI S Y, LI Q, WANG S X, CHEN J M, DING D, ZHAO B, YANG D S, HAO J M. Pollutant emissions from residential combustion and reduction strategies estimated via a village-based emission inventory in Beijing[J]. Environ Pollut,2018,238:230−237. doi: 10.1016/j.envpol.2018.03.036
    [3]
    GALVEZ M E, BOYANO A, MOLONER R, LAZARO M J. Low-cost carbon-based briquettes for the reduction of NO emissions: Optimal preparation procedure and influence in operating conditions[J]. J Anal Appl Pyrolysis,2010,88(1):80−90. doi: 10.1016/j.jaap.2010.02.010
    [4]
    JIAN Y M, LI X, ZHU X Q, ASHIDA R, WORASUWANNARAK N, HU Z Z, LUO G Q, YAO H, ZHONG M, LIU J M, MA F Y, MIURA K. Interaction between low-rank coal and biomass during degradative solvent extraction[J]. J Fuel Chem Technol,2019,47(1):14−22. doi: 10.1016/S1872-5813(19)30003-9
    [5]
    CHEN Y J, TIAN C G, FENG Y L, ZHI G R, LI J, ZHANG G. Measurements of emission factors of PM2.5, OC, EC, and BC for household stoves of coal combustion in China[J]. Atmos Environ,2015,109:190−196.
    [6]
    DU W, LI X Y, CHEN Y C, SHEN G F. Household air pollution and personal exposure to air pollutants in rural China - A review[J]. Environ Pollut,2018,237:625−638. doi: 10.1016/j.envpol.2018.02.054
    [7]
    MANORANJAN S, JOHN P, VIDHI S, GAUTAM N Y, PRATIM B. Evaluation of mass and surface area concentration of particle emissions and development of emissions indices for cookstoves in rural India[J]. Environ Sci Technol,2011,45(6):2428−2434.
    [8]
    ZHANG K X, YANG S, LIU S J, SHANGGUAN, J, CHANG, Z W. New strategy toward household coal combustion by remarkably reducing SO2 Emission[J]. ACS Omega,2020,5(6):3047−3054. doi: 10.1021/acsomega.9b04293
    [9]
    LIU S J, SHANGGUAN J, YANG S, DU W G, YAN X D, ZHANG K X, PLÁ R R. Producing effective and clean coke for household combustion activities to reduce gaseous pollutant emissions[J]. J Chem,2019,2019:1−12.
    [10]
    CHATTERJEE A, PRASAD H N. Possibilities of tar addition to coal as a method of improving coke strength[J]. Fuel,1983,62(5):591−600. doi: 10.1016/0016-2361(83)90232-6
    [11]
    GONZALEZCIMAS M, PATRICK J, WALKER A. Influence of pitch additions on coal carbonization coke strength and structural properties[J]. Fuel,1987,66(8):1019−1023. doi: 10.1016/0016-2361(87)90294-8
    [12]
    JASIENKO S, GRYGLEWICZ G. Co-carbonization of hard coals and coal extracts 1. The co-carbonization of low rank coals with extracts[J]. Fuel Process Technol,1983,7(2):77−90. doi: 10.1016/0378-3820(83)90028-0
    [13]
    TAKANOHASHI T, SHISHIDO T, SAITO I. Effects of hypercoal addition on coke strength and thermoplasticity of coal blends[J]. Energy Fuels,2008,22(3):1779−1783. doi: 10.1021/ef7007375
    [14]
    TAKANOHASHI T, SHISHIDO T, SAITO I, MASAKI K, DOBASHI A, FUKADA K. Synergistic effect of coal blends on thermoplasticity evaluated using a temperature-variable dynamic viscoelastic measurement[J]. Energy Fuels,2006,20(6):2552−2556. doi: 10.1021/ef0602675
    [15]
    ALVAREZ R, PIS J J, DÍEZ M A, BARRIOCANAL C, CANGA C S, MENÉNDEZ J A. A semi-industrial scale study of petroleum coke as an additive in cokemaking[J]. Fuel Process Technol,1998,55(2):129−141. doi: 10.1016/S0378-3820(97)00078-7
    [16]
    BENK A, COBAN A. Investigation of resole, novalac and coal tar pitch blended binder for the production of metallurgical quality formed coke briquettes from coke breeze and anthracite[J]. Fuel Process Technol,2011,92(3):631−638. doi: 10.1016/j.fuproc.2010.11.022
    [17]
    JIMENEZ F, MONDRAGON F, LOPEZ D. Structural changes in coal chars after pressurized pyrolysis[J]. J Anal Appl Pyrolysis,2012,95:164−170. doi: 10.1016/j.jaap.2012.02.003
    [18]
    ZHONG Q, YANG Y B, LI Q, XU B, JIANG T. Coal tar pitch and molasses blended binder for production of formed coal briquettes from high volatile coal[J]. Fuel Process Technol,2017,157:12−19. doi: 10.1016/j.fuproc.2016.11.005
    [19]
    ZHONG Q, YANG Y B, JIANG T, LI Q, XU B. Xylene activation of coal tar pitch binding characteristics for production of metallurgical quality briquettes from coke breeze[J]. Fuel Process Technol,2016,148:12−18. doi: 10.1016/j.fuproc.2016.02.026
    [20]
    MASSARO M M, SON S F, GROVEN L J. Mechanical, pyrolysis, and combustion characterization of briquetted coal fines with municipal solid waste plastic (MSW) binders[J]. Fuel,2014,115:62−69. doi: 10.1016/j.fuel.2013.06.043
    [21]
    ARSLAN V. Investigation of bonding mechanism of coking on semi-coke from lignite with pitch and tar[J]. Energy Fuels,2006,20(5):2137−2141. doi: 10.1021/ef060281h
    [22]
    LIU S J, WANG Z, YANG S, CHANG Z W, ZHANG K X. Significantly enhances caking index of long flame coal under tetralin glycerol/H2 system[J]. Asia-Pac J Chem Eng, 2019, 14(5): 2353.
    [23]
    ZHAO H Y, LI Y H, SONG Q, LV J X, SHU Y F, LIANG X X, SHU X Q. Effects of iron ores on the pyrolysis characteristics of a low-rank bituminous coal[J]. Energy Fuels,2016,30(5):3831−3839. doi: 10.1021/acs.energyfuels.6b00061
    [24]
    RIVA L, NIELSEN H K, SKREIBERG Y, WANG L, FANTOZZI F. Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke[J]. Appl Energy,2019,256:113933−113933. doi: 10.1016/j.apenergy.2019.113933
    [25]
    LI X H, LI L L, LI F, FENG J, LI W Y. Product distribution and interactive mechanism during co-pyrolysis of a subbituminous coal and its direct liquefaction residue[J]. Fuel,2017,199:372−379. doi: 10.1016/j.fuel.2017.03.004
    [26]
    AHMED M. Characterisation of an Egyptian coal by Mossbauer and FT-IR spectroscopy[J]. Fuel,2003,82(14):1825−1829. doi: 10.1016/S0016-2361(03)00131-5
    [27]
    SUN B L, YU J L, TAHMASEBI A, HAN Y N. An experimental study on binderless briquetting of Chinese lignite: Effects of briquetting conditions[J]. Fuel Process Technol,2014,124:243−248. doi: 10.1016/j.fuproc.2014.03.013
    [28]
    ASADULLAH M, ZHANG S, MIN Z H, YIMSIRI P, LI C Z. Effects of biomass char structure on its gasification reactivity[J]. Bioresour Technol,2010,101(20):7935−43. doi: 10.1016/j.biortech.2010.05.048
    [29]
    ZHAO Y Q, ZHANG Y F, ZHANG H R, WANG Q, GUO Y F. Structural characterization of carbonized briquette obtained from anthracite powder[J]. J Anal Appl Pyrolysis,2015,112:290−297. doi: 10.1016/j.jaap.2015.01.009
    [30]
    LI M F, ZENG F G, CHANG H Z, XU B S, WANG W. Aggregate structure evolution of low-rank coals during pyrolysis by in-situ X-ray diffraction[J]. Int J Coal Geol,2013,116−117:262−269. doi: 10.1016/j.coal.2013.07.008
    [31]
    GUPTA S, SAHAJWALLA V, CHAUBAL P, YOUMANS T. Carbon structure of coke at high temperatures and its influence on coke fines in blast furnace dust[J]. Metall Mater Trans B,2005,36(3):385−394. doi: 10.1007/s11663-005-0067-3
    [32]
    XING X A, ZHANG G B, ROGERS H C, PAUL Z, OLEG O. Effects of annealing on microstructure and microstrength of metallurgical coke[J]. Metall Mater Trans B,2013,45(1):106−112.
    [33]
    LI K J, KHANNA R, ZHANG J L, BARATI M, LIU Z J, XU T, YANG T J, SAHAJWALLA V. Comprehensive investigation of various structural features of bituminous coals using advanced analytical techniques[J]. Energy Fuels,2015,29(11):7178−7189. doi: 10.1021/acs.energyfuels.5b02064
    [34]
    BEHNKE-BOROWCZYK J, KWASNA H, KARTAWIK N, SIJKA B, BEŁKA M, ŁAKOMY P. Effect of management on fungal communities in dead wood of Scots pine[J]. For Ecol Manag,2021,479:118528.
    [35]
    QIN Z H, LI X, SUN H, ZHAO C C, RONG L M. Caking property and active components of coal based on group component separation[J]. Int Min Sci Technol,2016,26(4):571−575. doi: 10.1016/j.ijmst.2016.05.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (189) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return