Volume 51 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
MA Li-hai, GAO Xin-hua, ZHANG Jian-li, MA Jing-jing, HU Xiu-de, GUO Qing-jie. Effects of metal doping on the catalytic performance of LaFe-based perovskites for CO2 hydrogenation to light olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 101-110. doi: 10.1016/S1872-5813(22)60063-X
Citation: MA Li-hai, GAO Xin-hua, ZHANG Jian-li, MA Jing-jing, HU Xiu-de, GUO Qing-jie. Effects of metal doping on the catalytic performance of LaFe-based perovskites for CO2 hydrogenation to light olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 101-110. doi: 10.1016/S1872-5813(22)60063-X

Effects of metal doping on the catalytic performance of LaFe-based perovskites for CO2 hydrogenation to light olefins

doi: 10.1016/S1872-5813(22)60063-X
Funds:  The project was supported by the Key Project of Natural Science Foundation of Ningxia (2022AAC02002) and the National Natural Science Foundation of China (U20A20124)
More Information
  • Corresponding author: E-mail: zhangjl@nxu.edu.cnqingjie_guo@163.com
  • Received Date: 2022-05-30
  • Accepted Date: 2022-07-31
  • Rev Recd Date: 2022-07-28
  • Available Online: 2022-10-18
  • Publish Date: 2023-01-10
  • The catalytic behavior of K/LaFeBO3 (B =Cu, Zr, Al, Mn, Ni, and Zn) perovskite catalysts prepared by sol-gel and impregnation methods was investigated for CO2 hydrogenation to light olefins. The structure of various catalysts was characterized in detail by SEM, XRD, N2 adsorption-desorption, H2-TPR, CO2-TPD, TG, and XPS analysis. With the addition of Cu and Zn, the particles size decreased with high dispersion of Fe, while the exposed basic sites increased with lower hydrogen desorption temperature. The oxygen mobility in perovskites exhibited a considerable impact on catalytic activity and olefins selectivity, which considerably increased when Fe was substituted by Cu and Zn at the B site. Olefins were formed preferentially from oxygen species of the surface lattice with low binding energies (BEs). In addition, a faster diffusion rate of oxygen would lead to an enrichment of lattice oxygen species on the surface and increase the production of olefins.
  • loading
  • [1]
    DO T N, KIM J. Green C2-C4 hydrocarbon production through direct CO2 hydrogenation with renewable hydrogen: Process development and techno-economic analysis[J]. Energy Convers Manage,2020,214:112866. doi: 10.1016/j.enconman.2020.112866
    [2]
    GAO P, DANG S S, LI S G, BU X N, LIU Z Y, QIU M H, YANG C G, WANG H, ZHONG L S, HAN Y, LIU Q, WEI W, SUN Y H. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catal,2018,8(1):571−578. doi: 10.1021/acscatal.7b02649
    [3]
    WANG D, XIE Z H, POROSOFF M D, CHEN J G. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics[J]. Chem,2021,7(9):2277−2311. doi: 10.1016/j.chempr.2021.02.024
    [4]
    ZHU H Y, ZHANG P F, DAI S. Recent advances of lanthanum-based perovskite oxides for catalysis[J]. ACS Catal,2015,5(11):6370−6385. doi: 10.1021/acscatal.5b01667
    [5]
    LI D Y, XU R D, LI X Y, LI Z Q, ZHU X, LI K Z. Chemical looping conversion of gaseous and liquid fuels for chemical production: A review[J]. Energy Fuels,2020,34(5):5381−5413. doi: 10.1021/acs.energyfuels.0c01006
    [6]
    QIU Y, MA L, ZENG D W, LI M, CUI D X, LV Y L, ZHANG S, XIAO R. Efficient CO2 to CO conversion at moderate temperatures enabled by the cobalt and copper co-doped ferrite oxygen carrier[J]. J Energy Chem,2020,46:123−132. doi: 10.1016/j.jechem.2019.10.025
    [7]
    SHARMA P, ELDER T, GROOM L H, SPIVEY J J. Effect of structural promoters on Fe-Based Fischer-Tropsch synthesis of biomass derived syngas[J]. Top Catal,2013,57(6/9):526−537.
    [8]
    TIEN THAO N, SON L T. Production of cobalt-copper from partial reduction of La(Co, Cu)O3 perovskites for CO hydrogenation[J]. J Sci-Adv Mater and Dev,2016,1(3):337−342.
    [9]
    LIU Y, CHEN J F, BAO J, ZHANG Y. Manganese-modified Fe3O4microsphere catalyst with effective active phase of forming light olefins from syngas[J]. ACS Catal,2015,5(6):3905−3909. doi: 10.1021/acscatal.5b00492
    [10]
    ZHAN H J, LI F, GAO P, ZHAO N, XIAO F K, WEI W, ZHONG L S, SUN Y. Methanol synthesis from CO2 hydrogenation over La-M-Cu-Zn-O (M=Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors[J]. J Power Sources,2014,251:113−121. doi: 10.1016/j.jpowsour.2013.11.037
    [11]
    DING J, ZHAO W X, ZI L T, XU X, LIU Q, ZHONG Q, XU Y. Promotional effect of ZrO2 on supported FeCoK catalysts for ethylene synthesis from catalytic CO2 hydrogenation[J]. Int J Hydrogen Energy,2020,45(30):15254−15262. doi: 10.1016/j.ijhydene.2020.03.249
    [12]
    ELISHAV O, SHENER Y, BEILIN V, LANDAU M V, HERSKOWITZ M, SHTER G E, GRADER G S. Electrospun Fe-Al-O nanobelts for selective CO2 hydrogenation to light olefins[J]. ACS Appl Mater Inter,2020,12(22):24855−24867. doi: 10.1021/acsami.0c05765
    [13]
    GAO Q, MENG J, YANG Y, LIN Q Y, LU Y F, WEI X, LI J X, HAN G R, ZHANG Z. Zirconium doping in calcium titanate perovskite oxides with surface nanostep structure for promoting photocatalytic hydrogen evolution[J]. Appl Surf Sci,2021,542:148544. doi: 10.1016/j.apsusc.2020.148544
    [14]
    WEI C Y, TU W F, JIA L Y, LIU Y Y, LIAN H L, WANG P, ZHANG Z Z. The evolutions of carbon and iron species modified by Na and their tuning effect on the hydrogenation of CO2 to olefins[J]. Appl Surf Sci,2020,525:146622. doi: 10.1016/j.apsusc.2020.146622
    [15]
    HARE B J, MAITI D, RAMANI S, RAMOS A E, BHETHANABOTLA V R, KUHN J N. Thermochemical conversion of carbon dioxide by reverse water-gas shift chemical looping using supported perovskite oxides[J]. Catal Today,2019,323:225−232. doi: 10.1016/j.cattod.2018.06.002
    [16]
    LINDENTHAL L, POPOVIC J, RAMESHAN R, HUBER J, SCHRENK F, RUH T, NENNING A, LÖFFLER S, OPITZ A K, RAMESHAN C. Novel perovskite catalysts for CO2 utilization-exsolution enhanced reverse water-gas shift activity[J]. Appl Catal B: Environ,2021,292:120183. doi: 10.1016/j.apcatb.2021.120183
    [17]
    LINDENTHAL L, RAMESHAN R, SUMMERER H, RUH T, POPOVIC J, NENNING A, LÖFFLER S, OPITZ A K, BLAHA P, RAMESHAN C. Modifying the surface structure of perovskite-based catalysts by nanoparticle exsolution[J]. Catalysts,2020,10(3):268−282. doi: 10.3390/catal10030268
    [18]
    CHANG H, BJØRGUM E, MIHAL O, YANG J, LEIN H L, GRANDE T, RAAEN S, ZHU Y A, HOLMEN A, CHEN D. Effects of oxygen mobility in La-Fe-based perovskites on the catalytic activity and selectivity of methane oxidation[J]. ACS Catal,2020,10(6):3707−3719. doi: 10.1021/acscatal.9b05154
    [19]
    WU J X, ZHENG Y S, DACQUIN J P, DJELAL N, CORDIER C, DUJARDIN C, GRANGER P. Impact of dual calcium and manganese substitution of La-deficient perovskites on structural and related catalytic properties: Future opportunities in next three-way-catalyst generation[J]. Appl Catal A: Gen,2021,619:118137. doi: 10.1016/j.apcata.2021.118137
    [20]
    ABBAS M, ZHANG J, MANSOUR T S, CHEN J G. Hierarchical porous spinel MFe2O4 (M=Fe, Zn, Ni and Co) nanoparticles: Facile synthesis approach and their superb stability and catalytic performance in Fischer-Tropsch synthesis[J]. Int J Hydrogen Energy,2020,45(18):10754−10763. doi: 10.1016/j.ijhydene.2020.02.044
    [21]
    YANG Q L, LIU G L, LIU Y. Perovskite-type oxides as the catalyst precursors for preparing supported metallic nanocatalysts: A review[J]. Ind Eng Chem Res,2018,57(1):1−17. doi: 10.1021/acs.iecr.7b03251
    [22]
    WU M D, CHEN S Y, XIANG W G. Oxygen vacancy induced performance enhancement of toluene catalytic oxidation using LaFeO3 perovskite oxides[J]. Chem Eng J,2020,387:124101. doi: 10.1016/j.cej.2020.124101
    [23]
    FANG Y Z, LIU Y, ZHANG L H. LaFeO3-supported nano Co-Cu catalysts for higher alcohol synthesis from syngas[J]. Appl Catal A: Gen,2011,397(1/2):183−191.
    [24]
    YIN K J, SHEN Y L. Theoretical insights into CO2 hydrogenation to HCOOH over FexZr1-xO2 solid solution catalyst[J]. Appl Surf Sci,2020,528:146926. doi: 10.1016/j.apsusc.2020.146926
    [25]
    SIM Y, KWON D, ANA S, HAB J M, OHC T S, JUNG J H. Catalytic behavior of ABO3 perovskites in the oxidative coupling of methane[J]. Mol Catal,2020,489:110925. doi: 10.1016/j.mcat.2020.110925
    [26]
    SHESHKO T F, MARKOVA E B, SHARAEVA A A, KRYUCHKOVA T A, ZVEREVA I A, CHISLOVA I V, YAFAROVA L V. Carbon monoxide hydrogenation over Gd (Fe/Mn) O3 perovskite-type catalysts[J]. Petrol Chem,2019,59(12):1307−1313. doi: 10.1134/S0965544119120107
    [27]
    MATTSSON A, LEJON C, BAKARDJIEVA S, ŠTENGL V, ÖSTERLUND L. Characterisation, phase stability and surface chemical properties of photocatalytic active Zr and Y co-doped anatase TiO2 nanoparticles[J]. J Solid State Chem,2013,199:212−223. doi: 10.1016/j.jssc.2012.12.018
    [28]
    EZBIRI M, BECATTINI V, HOES M, MICHALSKY R, STEINFELD A. High redox capacity of Al-Doped La1−xSrxMnO3−δ perovskites for splitting CO2 and H2O at Mn-enriched surfaces[J]. ChemSusChem,2017,10(7):1517−1525. doi: 10.1002/cssc.201601869
    [29]
    GROSVENOR A P, KOBE B A, BIESINGER M C, MCINTYRE N S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds[J]. Surf Interface Anal,2004,36(12):1564−1574. doi: 10.1002/sia.1984
    [30]
    WU J X, ZHENG Y S, DACQUIN J P, DJELAL N, CORDIER C, DUJARDIN C, GRANGER P. Impact of dual calcium and manganese substitution of La-deficient perovskites on structural and related catalytic properties: Future opportunities in next three-way-catalyst generation[J]. Appl Catal A: Gen,2021,619(11):118−137.
    [31]
    XI X Y, ZENG F, ZHANG H, WU X F, REN J, BISSWANGER T, STAMPFER C, HOFMANN J P, PALKOVITS R, HEERES H J. CO2 hydrogenation to higher alcohols over K-promoted bimetallic Fe–In catalysts on a Ce-ZrO2 support[J]. ACS Sustainable Chem Eng,2021,9(18):6235−6249. doi: 10.1021/acssuschemeng.0c08760
    [32]
    SHI J M, CHANG Y, TANG Y S, WANG X B, WANG X F, ZHANG X C, CAO J L. Hydrogenated LaFeO3 with oxygen vacancies for enhanced visible light photocatalytic performance[J]. Ceram Inter,2020,46(4):5315−5322. doi: 10.1016/j.ceramint.2019.10.282
    [33]
    ZHANG X H, PEI C L, CHANG X, CHEN S, LIU R, ZHAO Z J, MU R T, GONG J L. FeO6 octahedral distortion activates lattice oxygen in perovskite ferrite for methane partial oxidation coupled with CO2 splitting[J]. J Am Chem Soc,2020,142(26):11540−11549. doi: 10.1021/jacs.0c04643
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1491) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return