Volume 51 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
GONG You-jing, HE Ren-guang, ZHAO Guang-lei, JIA Li-juan, GAO Ji-yun, WANG Fang, DUAN Kai-jiao, LIU Tian-cheng. Effect of Pr/Zr atomic ratio on the activity of catalytic oxidation denitration of PrxZr1−xO2–δ[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 996-1006. doi: 10.1016/S1872-5813(23)60341-X
Citation: GONG You-jing, HE Ren-guang, ZHAO Guang-lei, JIA Li-juan, GAO Ji-yun, WANG Fang, DUAN Kai-jiao, LIU Tian-cheng. Effect of Pr/Zr atomic ratio on the activity of catalytic oxidation denitration of PrxZr1−xO2–δ[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 996-1006. doi: 10.1016/S1872-5813(23)60341-X

Effect of Pr/Zr atomic ratio on the activity of catalytic oxidation denitration of PrxZr1−xO2–δ

doi: 10.1016/S1872-5813(23)60341-X
Funds:  The project was supported by the National Natural Science Foundation of China (51568068) and the Young and Middle-aged Academic and Technical Leaders Reserve Talent Project (202105AC160054)
More Information
  • Corresponding author: Tel: 13708893755, E-mail: liutiancheng76@163.com
  • Received Date: 2022-11-11
  • Accepted Date: 2022-12-21
  • Rev Recd Date: 2022-12-20
  • Available Online: 2023-02-27
  • Publish Date: 2023-07-01
  • The PrxZr1−xO2–δ catalyst with different atom ratio of Pr/Zr was prepared by the sol-gel to catalytic oxidation denitration. Results showed that the efficiency of catalytic oxidation denitration increased initially and decreased afterward with the ratio of Pr atom increased. And the optimum denitration activity could achieve 94.62% at 250 °C when the atom ratio of Pr/Zr was 5∶5. The catalysts were characterized by SEM, N2 adsorption-desorption, XRD, XPS, H2-TPR, and FT-IR. The results illustrated that the catalyst (Pr0.5Zr0.5O2−δ) with the best activity has a “layered” morphology, many pores on the surface, and it has a large specific surface area and pore volume of 77.74 m2/g and 0.66 cm3/g, respectively. Furthermore, the crystalline phase transforms from c-ZrO2 to Pr2Zr2O7 with the increasing of Pr atom. XPS and H2-TPR results showed that the surface chemosorption oxygen and surface Pr4 + oxides increased, and the rising of Pr atom ratio was beneficial to produce oxygen vacancy (Vӧ) site which advantageous to improve the efficiency of catalytic oxidation denitration. FT-IR characterization results indicated that Pr0.5Zr0.5O2−δ solid solution had better NO selectivity, which was conducive to the catalytic oxidation of NO. The anti-SO2 and H2O toxicity experiments showed that Pr/Zr atomic ratio at 5∶5 had better anti-toxicity than other ratios. In addition, using IC to analysis absorption products, the result showed that ${\rm{NO}}^-_2 $ and ${\rm{NO}}^-_3 $ were the main products in the absorption solution.
  • loading
  • [1]
    CHEN L, WANG X X, CONG Q L, MA H Y, LI S J, LI W. Design of a hierarchical Fe-ZSM-5@CeO2 catalyst and the enhanced performances for the selective catalytic reduction of NO with NH3[J]. Chem Eng J,2019,369:957−967. doi: 10.1016/j.cej.2019.03.055
    [2]
    LIU Y Y, GAO F Y, YI H H, YANG C, ZHANG R C, ZHOU Y S, TANG X L. Recent advances in selective catalytic oxidation of nitric oxide (NO-SCO) in emissions with excess oxygen: A review on catalysts and mechanisms[J]. Environ Sci Pollut Res Int,2021,28(3):2549−2571. doi: 10.1007/s11356-020-11253-6
    [3]
    GHOLAMI Z, LUO G H, GHOLAMI F, YANG F. Recent advances in selective catalytic reduction of NOx by carbon monoxide for flue gas cleaning process: A review[J]. Catal Rev,2020,63(1):68−119.
    [4]
    GUO R T, HAO J K, PAN W G, YU Y L. Liquid phase oxidation and absorption of NO from flue gas: A review[J]. Sep Sci Technol,2015,50(2):310−321. doi: 10.1080/01496395.2014.956761
    [5]
    ADEWUYI Y G, KHAN M A. Nitric oxide removal by combined persulfate and ferrous-EDTA reaction systems[J]. Chem Eng J,2015,281:575−587. doi: 10.1016/j.cej.2015.06.114
    [6]
    CHEN R, ZHANG T S, GUO Y Q, WANG J W, WEI J X, YU Q J. Recent advances in simultaneous removal of SO2 and NOx from exhaust gases: Removal process, mechanism and kinetics[J]. Chem Eng J,2021,420:127588−127631. doi: 10.1016/j.cej.2020.127588
    [7]
    SUN P, GUO R T, LIU S M, WANG S X, PAN W G, LI M Y. The enhanced performance of MnOx catalyst for NH3-SCR reaction by the modification with Eu[J]. Appl Catal A: Gen,2017,531:129−138. doi: 10.1016/j.apcata.2016.10.027
    [8]
    CHEN L, XU Z W, HE C, WANG Y G, LIANG Z Y, ZHAO Q X, LU Q. Gas-phase total oxidation of nitric oxide using hydrogen peroxide vapor over Pt/TiO2[J]. Appl Surf Sci,2018,457:821−830. doi: 10.1016/j.apsusc.2018.07.032
    [9]
    CHENG X X, BI X T. A review of recent advances in selective catalytic NOx reduction reactor technologies[J]. Particuology,2014,16:1−18. doi: 10.1016/j.partic.2014.01.006
    [10]
    ARVAJOVÁ A B, BOUTIKOS P, PEČINKA R, KOČÍ P. Global kinetic model of NO oxidation on Pd/γ-Al2O3 catalyst including PdOx formation and reduction by CO and C3H6[J]. Appl Catal B: Environ,2020,260:118141−118149. doi: 10.1016/j.apcatb.2019.118141
    [11]
    ZHANG L, SU H, ZHANG L, YANG J, WANG Y S. MnOx-CuOx cordierite catalyst for selective catalytic oxidation of the NO at low temperature[J]. Environ Sci Pollut Res Int,2020,27(19):23695−23706. doi: 10.1007/s11356-020-08785-2
    [12]
    SHAO J M, LIN F W, HUANG Y K, WANG Z H, LI Y, CHEN G Y, CEN K F. MnO fabrication with rational design of morphology for enhanced activity in NO oxidation and SO2 resistance[J]. Appl Surf Sci,2020,503:144064−144079. doi: 10.1016/j.apsusc.2019.144064
    [13]
    SALMAN A R, HYRVE S M, REGLI S K, ZUBAIR M, ENGER B C, LØDENG R, WALLER D, RØNNING M. Catalytic oxidation of NO over LaCo1−xBxO3 (B = Mn, Ni) perovskites for nitric acid production[J]. Catalysts,2019,9(5):429−440. doi: 10.3390/catal9050429
    [14]
    YI H H, YANG K, TANG X L, ZHAO S Z, GAO F Y, HUANG Y H, YANG Z Y, WANG J G, SHI Y R, XIE X Z. Simultaneous desulfurization and denitrification on the SAPO-34@Al2O3 core-shell structure adsorbent[J]. Energy Fuels,2018,32(11):11694−11700. doi: 10.1021/acs.energyfuels.8b02847
    [15]
    LI Y, CHENG H, LI D Y, QIN Y S, XIE Y M, WANG S D. WO3/CeO2-ZrO2, a promising catalyst for selective catalytic reduction (SCR) of NOx with NH3 in diesel exhaust[J]. Chem. Commun.,2008,12:1470−1472.
    [16]
    MENG D M, ZHAN W C, GUO Y, GUO Y L, WANG L, LU G Z. A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature: Promotional role of Sm and its catalytic performance[J]. ACS Catal,2015,5(10):5973−5983. doi: 10.1021/acscatal.5b00747
    [17]
    BELLAKKI M B, SHIVAKUMARA C, BAIDYA T, PRAKASH A S, VASANTHACHARYA N Y, HEDGE M S. Synthesis, structure and oxygen-storage capacity of Pr1−xZrxO2−δ and Pr1−x−yPdyZrxO2−δ[J]. Mater Res Bull,2008,43(10):2658−2667. doi: 10.1016/j.materresbull.2007.10.033
    [18]
    NAKATSUJI T, KUNISHIGE M, LI J Y, HASHIMOTO M, MATSUZONO Y. Effect of CeO2 addition into Pd/Zr-Pr mixed oxide on three-way catalysis and thermal durability[J]. Catal Commun,2013,35:88−94. doi: 10.1016/j.catcom.2013.02.002
    [19]
    ROSSIGNOL S, GÉRARD F, MESNARD D, KAPPENSTEIN C, DUPREZ D. Structural changes of Ce-Pr-O oxides in hydrogen: A study by in situ X-ray diffraction and Raman spectroscopy[J]. J Mater Chem,2003,13(12):3017−3020. doi: 10.1039/B306726B
    [20]
    NIU G, HILDEBRANDT E, SCHUBERT MA, BOSCHERINI F, ZOELLNER MH, ALFF L, WALCZYK D, ZAUMSEIL P, COSTINA I, WILKENS H, SCHROEDER T. Oxygen vacancy induced room temperature ferromagnetism in Pr-doped CeO2 thin films on silicon[J]. ACS Appl Mater Interfaces,2014,6(20):17496−17505.
    [21]
    BURNS J R, RAMSHAW C. Process intensification: Visual study of liquid maldistribution in rotating packed beds[J]. Chem Eng Sci,1996,51(8):1347−1352. doi: 10.1016/0009-2509(95)00367-3
    [22]
    LI R, WU B, CHEN Y Q, Ren G Q, DUAN K J, LIU T C. Influence of polyethylene glycol on the catalytic activity of MnFeOx for NO oxidation at low-temperature[J]. Catal Lett,2019,149:1864−1873. doi: 10.1007/s10562-019-02793-9
    [23]
    YAO Y Q, YING Y F, LUO M F, WANG Y J, MA J M. Mesoporous structure of praseodymium-stabilized zirconia[J]. Mater. Lett,2007,61(1):192−195. doi: 10.1016/j.matlet.2006.04.029
    [24]
    DOMÉNECH A, MONTOYA N, ALARCÓN J. Electrochemical characterization of praseodymium centers in PrxZr1−xO2 zirconias using electrocatalysis and photoelectrocatalysis[J]. J Solid State Electrochem,2012,16:963−975. doi: 10.1007/s10008-011-1470-0
    [25]
    FAN F K, KUZNETSOV A K, KELER É K. Zirconates of the rare earth elements and their physicochemical properties Communication 2. Praseodymium zirconate Pr2Zr2O7, Bulletin of the Academy of Sciences[J]. USSR Div Chem Sci,1965,14:573−576. doi: 10.1007/BF00846706
    [26]
    JIE L. Preparation and structure of LnO(2-δ)-ZrO2 (Ln=Ce, Tb, Pr) oxygen storage material[M]. Rare Earth, 2009, 30: 15-18.
    [27]
    NASKAR M K, GANGULI D. Rare-earth doped zirconia fibres by sol-gel processing[J]. J Mater Sci,1996,31:6263−6267. doi: 10.1007/BF00354448
    [28]
    CAO X H, LU J C, ZHAO Y T, TIAN R, ZHANG W J, HE D D, LUO Y M. Promotional effects of rare-earth praseodymium (Pr) modification over MCM-41 for methyl mercaptan catalytic decomposition[J]. Processes,2021,9:400−414. doi: 10.3390/pr9020400
    [29]
    JIANG N, ZHOU X, JIANG Y F, ZHAO Z W, MA L B, SHEN C C, LIU Y N, YUAN C Z, SAHAR S, XU A W. Oxygen deficient Pr6O11 nanorod supported palladium nanoparticles: Highly active nanocatalysts for styrene and 4-nitrophenol hydrogenation reactions[J]. RSC Adv,2018,8:17504−17510. doi: 10.1039/C8RA02831A
    [30]
    ARAGÓN F, GONZALES I, COAQUIRA J, HIDALGO P, BRITO H, ARDISSON J, MACEDO W, MORAIS P. Structural and surface study of praseodymium-doped SnO2 nanoparticles prepared by the polymeric precursor method[J]. J Phys Chem C,2015,119(16):8711−8717. doi: 10.1021/acs.jpcc.5b00761
    [31]
    OGASAWARA H, KOTANI A, POTZE R, SAWATZKY G A, THOLE B T. Praseodymium 3d- and 4d-core photoemission spectra of Pr2O3[J]. Phys Rev B Condens Matter,1991,44(11):5465−5469. doi: 10.1103/PhysRevB.44.5465
    [32]
    MARIA F M, HÉCTOR B M, ELOÍSA C. Study of the role of praseodymium and iron in an environment-friendly reddish orange pigment based on Fe doped Pr2Zr2O7: A multifunctional material[J]. J Alloys Compd,2020,845:155841−155852. doi: 10.1016/j.jallcom.2020.155841
    [33]
    SARTORETTI E, MARTINI F, PIUMETTI M, BENSAID S, RUSSO N, FINO D. Nanostructured equimolar ceria-praseodymia for total oxidations in low-O2 conditions[J]. Catalysts,2020,10:165−181. doi: 10.3390/catal10020165
    [34]
    LI H C, LI K Z, ZHU X, DU Y P, WEI Y G, ZHAI K, WANG H. Synthesis of mesoporous PrxZr1−xO2−δ solid solution with high thermal stability for catalytic soot oxidation[J]. J Ind Eng Chem,2017,54:126−136. doi: 10.1016/j.jiec.2017.05.025
    [35]
    MA L, ZHANG W, WANG Y G, CHEN X Y, YU W T, SUN K, SUN H P, LI J H, SCHWANK J W. Catalytic performance and reaction mechanism of NO oxidation over Co3O4 catalysts[J]. Appl Catal B: Environ,2020,267:118371−118414. doi: 10.1016/j.apcatb.2019.118371
    [36]
    MARKARYAN G L, IKRYANNIKOVA L N, MURAVIEVA G P, TURAKULOVA A O, KOSTYUK B G, LUNINA E V, LUNIN V V, ZHILINSKAYA E, ABOUKAIS A. Red-ox properties and phase composition of CeO2-ZrO2 and Y2O3-CeO2-ZrO2 solid solutions[J]. Colloids Surf,1999,151(3):435−447. doi: 10.1016/S0927-7757(98)00574-3
    [37]
    TANKOV I, PAWELEC B, ARISHTIROVA K, DAMVANOVA S. Structure and surface properties of praseodymium modified alumina[J]. Appl Surf Sci,2011,258(1):278−284. doi: 10.1016/j.apsusc.2011.08.046
    [38]
    ZHU J H, WANG Y. Generation and characterization of strong alkali sites on KNO3/Al2O3[J]. Chin J Catal,1996,17:286−290.
    [39]
    DROŻDŻEWSKI P. Resonance Raman and infrared spectra of the Pr (PAN)3 complex[J]. J Raman Spectrosc,1988,19(2):111−115. doi: 10.1002/jrs.1250190207
    [40]
    MA Z X, SHENG L P, WANG X W, YUAN W T, CHEN S Y, XUE W, HAN G R, ZHANG Z, YANG H S, LU Y H, WANG Y. Oxide catalysts with ultrastrong resistance to SO2 deactivation for removing nitric oxide at low temperature[J]. Adv Mater,2019,31(42):1903719. doi: 10.1002/adma.201903719
    [41]
    JIANG H X, WANG J, ZHOU J L, CHEN Y F, ZHANG M H. Effect of promoters on the catalytic performance and SO2/H2O resistance of α-MnO2 catalysts for low temperature NH3-SCR[J]. Ind Eng Chem Res,2019,58(4):1760−1768. doi: 10.1021/acs.iecr.8b05009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (158) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return