Volume 51 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
YAO Tai-zhen, AN Yun-lei, YU Hai-ling, LIN Tie-jun, YU Fei, ZHONG Liang-shu. Support effects on Ru-based catalysts for Fischer-Tropsch synthesis to olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1400-1410. doi: 10.1016/S1872-5813(23)60351-2
Citation: YAO Tai-zhen, AN Yun-lei, YU Hai-ling, LIN Tie-jun, YU Fei, ZHONG Liang-shu. Support effects on Ru-based catalysts for Fischer-Tropsch synthesis to olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1400-1410. doi: 10.1016/S1872-5813(23)60351-2

Support effects on Ru-based catalysts for Fischer-Tropsch synthesis to olefins

doi: 10.1016/S1872-5813(23)60351-2
Funds:  The project was supported by Natural Science Foundation of China (U22B20136, 91945301, 22202230), National Key R&D Program of China (2021YFF0500702), Natural Science Foundation of Shanghai (22JC1404200), Program of Shanghai Academic/Technology Research Leader (20XD1404000), the “Transformational Technologies for Clean Energy and Demonstration” and Strategic Priority Research Program of Chinese Academy of Sciences (XDA21020600)
More Information
  • Corresponding author: E-mail: anyl@sari.ac.cnzhongls@sari.ac.cn
  • Received Date: 2022-12-20
  • Accepted Date: 2023-01-11
  • Rev Recd Date: 2023-01-10
  • Available Online: 2023-03-24
  • Publish Date: 2023-10-10
  • The effects of supports (CeO2, ZrO2, MnO2, SiO2 and active carbon) on the structure and catalytic performance of Ru-based catalysts for Fischer-Tropsch synthesis to olefins (FTO) were investigated. It was found that the intrinsic characteristics of supports and the metal-support interaction (MSI) would greatly influence the catalytic performance. The catalytic activity followed the order: Ru/SiO2 > Ru/ZrO2 > Ru/MnO2 > Ru/AC > Ru/CeO2. As far as olefins selectivity was concerned, both Ru/SiO2 and Ru/MnO2 possessed high selectivity to olefins (>70%), while olefins selectivity for Ru/ZrO2 was the lowest (29.9%). Ru/SiO2 exhibited the appropriate Ru nanoparticles size ( ~ 5 nm) with highest activity due to the relatively low MSI between Ru and SiO2. Both Ru/AC and Ru/MnO2 presented low CO conversion with Ru nanoparticles size of 1−3 nm. Stronger olefins secondary hydrogenation capacity led to the significantly decreased olefins selectivity for Ru/AC and Ru/ZrO2. In addition, partial Ru species might be encapsulated by reducible CeO2 layer for Ru/CeO2 due to strong MSI effects, leading to the lowest activity.
  • loading
  • [1]
    DRY M E. The Fischer-Tropsch process: 1950–2000[J]. Catal Today,2002,71(3):227−241.
    [2]
    TORRES GALVIS H M, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A I, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science,2012,335(6070):835−838. doi: 10.1126/science.1215614
    [3]
    YU F, LI Z J, AN Y L, GAO P, ZHONG L S, Research progress in the direct conversion of syngas to lower olefin[J]. J Fuel Chem Technol, 2016, 44(7): 801−814.
    [4]
    YU F, LIN T J, AN Y L, GONG K, WANG X X, SUN Y H, ZHONG L S. Recent advances in Co2C-based nanocatalysts for direct production of olefins from syngas conversion[J]. Chem Commun,2022,58(70):9712−9727. doi: 10.1039/D2CC03048A
    [5]
    CHENG K, GU B, LIU X L, KANG J C, ZHANG Q H, WANG Y. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed,2016,55(15):4725−4728. doi: 10.1002/anie.201601208
    [6]
    JIAO F, LI J J, PAN X L, XIAO J P, LI H B, MA H, WEI M M, PAN Y, ZHOU Z Y, LI M R, MIAO S, LI J, ZHU Y F, XIAO D, HE T, YANG J H, QI F, FU Q, BAO X H. Selective conversion of syngas to light olefins[J]. Science,2016,351(6277):1065−1068. doi: 10.1126/science.aaf1835
    [7]
    SONG F, YONG X J, WU X M, ZHANG W, MA Q X, ZHAO T J, TAN M H, GUO Z S, ZHAO H, YANG G H, TSUBAKI N, TAN Y S. FeMn@HZSM-5 capsule catalyst for light olefins direct synthesis via Fischer-Tropsch synthesis: studies on depressing the CO2 formation[J]. Appl Catal B: Environ,2022,300:120713. doi: 10.1016/j.apcatb.2021.120713
    [8]
    LIN T J, AN Y L, YU F, GONG K, YU H L, WANG C Q, SUN Y H, ZHONG L S. Advances in selectivity control for Fischer-Tropsch synthesis to fuels and chemicals with high carbon efficiency[J]. ACS Catal,2022,12(19):12092−12112. doi: 10.1021/acscatal.2c03404
    [9]
    ZHAO H B, MA D. χ-Fe5C2: Structure, synthesis, and tuning of catalytic properties[J]. Acta Phys-Chim Sin,2020,36(1):32−41.
    [10]
    LÓPEZ C, CORMA A. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. ChemCatChem,2012,4(6):751−752. doi: 10.1002/cctc.201200178
    [11]
    ZHONG L S, YU F, AN Y L, ZHAO Y H, SUN Y H, LI Z J, LIN T J, LIN Y J, QI X Z, DAI Y Y, GU L, HU J S, JIN S F, SHEN Q, WANG H. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature,2016,538(7623):84−87. doi: 10.1038/nature19786
    [12]
    XU Y F, LI X Y, GAO J H, WANG J, MA G Y, WEN X D, YANG Y, LI Y W, DING M Y. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J]. Science,2021,371(6529):610−613. doi: 10.1126/science.abb3649
    [13]
    LIN T J, LIU P G, GONG K, AN Y L, YU F, WANG X X, ZHONG L S, SUN Y H. Designing silica-coated CoMn-based catalyst for Fischer-Tropsch synthesis to olefins with low CO2 emission[J]. Appl Catal B: Environ,2021,299:120683. doi: 10.1016/j.apcatb.2021.120683
    [14]
    ZHANG Y R, YANG X L, YANG X F, DUAN H M, QI H F, SU Y, LIANG B B, TAO H B, LIU B, CHEN D, SU X, HUANG Y Q, ZHANG T. Tuning reactivity of Fischer-Tropsch synthesis by regulating TiOx overlayer over Ru/TiO2 nanocatalysts[J]. Nat Commun,2020,11(1):3185. doi: 10.1038/s41467-020-17044-4
    [15]
    YU H L, WANG C Q, LIN T J, AN Y L, WANG Y C, CHANG Q Y, YU F, WEI Y, SUN F F, JIANG Z, LI S G, SUN Y H, ZHONG L S. Direct production of olefins from syngas with ultrahigh carbon efficiency[J]. Nat Commun,2022,13(1):5987. doi: 10.1038/s41467-022-33715-w
    [16]
    OKAL J, ZAWADZKI M, KRASZKIEWICZ P, ADAMSKA K. Ru/CeO2 catalysts for combustion of mixture of light hydrocarbons: Effect of preparation method and metal salt precursors[J]. Appl Catal A: Gen,2018,549:161−169. doi: 10.1016/j.apcata.2017.09.036
    [17]
    LI J H, LIU Z Q, CULLEN D A, HU W H, HUANG J, YAO L B, PENG Z M, LIAO P L, WANG R G. Distribution and valence state of Ru species on CeO2 supports: Support shape effect and its influence on CO oxidation[J]. ACS Catal,2019,9(12):11088−11103. doi: 10.1021/acscatal.9b03113
    [18]
    HUANG H, DAI Q G, WANG X Y. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. Appl Catal B: Environ,2014,158-159:96−105. doi: 10.1016/j.apcatb.2014.01.062
    [19]
    NDOLOMINGO M J, MEIJBOOM R. Noble and base-metal nanoparticles supported on mesoporous metal oxides: Efficient catalysts for the selective hydrogenation of levulinic acid to γ-valerolactone[J]. Catal Lett,2019,149(10):2807−2822. doi: 10.1007/s10562-019-02790-y
    [20]
    ZHU L J, YIN S, YIN Q Q, WANG H X, WANG S R. Biochar: A new promising catalyst support using methanation as a probe reaction[J]. Energy Sci Eng,2015,3(2):126−134. doi: 10.1002/ese3.58
    [21]
    GARCÍA-GARCÍA F R, FERNÁNDEZ-GARCÍA M, NEWTON M A, RODRÍGUEZ-RAMOS I, GUERRERO-RUIZ A. Following the evolution of Ru/activated carbon catalysts during the decomposition-reduction of the Ru(NO)(NO3)3 precursor[J]. ChemCatChem,2013,5(8):2446−2452. doi: 10.1002/cctc.201300065
    [22]
    DEKA J R, SAIKIA D, HSIA K S, KAO H M, YANG Y C, CHEN C S. Ru nanoparticles embedded in cubic mesoporous silica SBA-1 as highly efficient catalysts for hydrogen generation from ammonia borane[J]. Catalysts,2020,10(3):267. doi: 10.3390/catal10030267
    [23]
    WANG C Q, YU H L, LIN T J, QI X Z, YU F, ZHONG L S, SUN Y H. Direct synthesis of higher alcohols from syngas over modified Mo2C catalysts under mild reaction conditions[J]. Catal Sci Technol,2022,12(5):1697−1708. doi: 10.1039/D1CY02186A
    [24]
    TUXEN A, CARENCO S, CHINTAPALLI M, CHUANG C H, ESCUDERO C, PACH E, JIANG P, BORONDICS F, BEBERWYCK B, ALIVISATOS A P, THORNTON G, PONG W F, GUO J H, PEREZ R, BESENBACHER F, SALMERON M. Size-dependent dissociation of carbon monoxide on cobalt nanoparticles[J]. J Am Chem Soc,2013,135(6):2273−2278. doi: 10.1021/ja3105889
    [25]
    QUEK X Y, PESTMAN R, VAN SANTEN R A, HENSEN E J M. Structure sensitivity in the ruthenium nanoparticle catalyzed aqueous-phase Fischer-Tropsch reaction[J]. Catal Sci Technol,2014,4(10):3510−3523. doi: 10.1039/C4CY00709C
    [26]
    MOHAMED Z, DASIREDDY V D B C, SINGH S, FRIEDRICH H B. TiO2 and ZrO2 supported Ru catalysts for CO mitigation following the water-gas shift reaction[J]. Int J Hydrogen Energy,2018,43(49):22291−22302. doi: 10.1016/j.ijhydene.2018.10.061
    [27]
    LI Z J, YU D M, YANG L Y, CEN J, XIAO K, YAO N, LI X N. Formation mechanism of the Co2C nanoprisms studied with the CoCe System in the Fischer-Tropsch to olefin reaction[J]. ACS Catal,2021,11(5):2746−2753. doi: 10.1021/acscatal.0c04504
    [28]
    ZHANG H W, ZHANG H T, QIAN W X, WU X, MA H F, SUN Q W, YING W Y. Sodium modified Fe-Mn microsphere catalyst for Fischer-Tropsch synthesis of light olefins[J]. Catal Today,2022,388-389:199−207. doi: 10.1016/j.cattod.2020.07.040
    [29]
    LIN J, WANG A Q, QIAO B T, LIU X Y, YANG X F, WANG X D, LIANG J X, LI J, LIU J Y, ZHANG T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction[J]. J Am Chem Soc,2013,135(41):15314−15317. doi: 10.1021/ja408574m
    [30]
    VECCHIETTI J, BONIVARDI A, XU W, STACCHIOLA D, DELGADO J J, CALATAYUD M, COLLINS S E. Understanding the role of oxygen vacancies in the water gas shift reaction on ceria-supported platinum catalysts[J]. ACS Catal,2014,4(6):2088−2096. doi: 10.1021/cs500323u
    [31]
    RAJESH T, DEVI R N. Role of oxygen vacancies in water gas shift reaction: activity study on BaCe0.98–xYx Pt0.02O3−δ perovskites[J]. J Phys Chem,2014,118(36):20867−20874.
    [32]
    JACKSON N B, EKERDT J G. Methanol synthesis mechanism over zirconium dioxide[J]. J Catal,1986,101(1):90−102. doi: 10.1016/0021-9517(86)90232-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (311) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return