Volume 51 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
ZHOU Hao, LIU Su-xiang, ZHAO Bao-feng, WANG Jing-wei, GUAN Hai-bin, ZHU Di, LI Huan, SONG An-gang. Analyzing the pyrolysis mechanism of avermectin via experiments and density functional theory[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1137-1144. doi: 10.1016/S1872-5813(23)60367-6
Citation: ZHOU Hao, LIU Su-xiang, ZHAO Bao-feng, WANG Jing-wei, GUAN Hai-bin, ZHU Di, LI Huan, SONG An-gang. Analyzing the pyrolysis mechanism of avermectin via experiments and density functional theory[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1137-1144. doi: 10.1016/S1872-5813(23)60367-6

Analyzing the pyrolysis mechanism of avermectin via experiments and density functional theory

doi: 10.1016/S1872-5813(23)60367-6
Funds:  The project was supported by the National Key R&D Program of China (2018YFE0106400), Natural Science Foundation of Shandong Province of China (ZR2019MEE069), “20 Colleges and Universities” of Jinan Science and Technology Bureau (202228123, 2019GXRC046), Qilu University of Technology (Shandong Academy of Sciences) Science, Education and Industry Integration Innovation Pilot Project (2022GH010)
More Information
  • Corresponding author: E-mail: liusx@sdas.orgzhud@sderi.cn
  • Received Date: 2023-02-07
  • Accepted Date: 2023-04-25
  • Rev Recd Date: 2023-03-21
  • Available Online: 2023-05-06
  • Publish Date: 2023-08-01
  • In this study, the thermal degradation mechanism of avermectin (AVM) was analyzed via experiments and density functional theory calculations (DFT). The experimental results of AVMD pyrolysis indicated that the removal rate of AVM residues reached peak value of 99.88% above 250 °C. The main product of AVM pyrolysis was alcohols. Based on the C−O bonds breaking, four potential degradation pathways were proposed. The findings of the calculations were in agreement with those of the experiments. These results provide theoretical and empirical guidance for the development of safe antibiotic disposal technology.
  • loading
  • [1]
    SHEN Y, ZHUAN R, CHU L, XIANG X, SUN H, WANG J. Inactivation of antibiotic resistance genes in antibiotic fermentation residues by ionizing radiation: Exploring the development of recycling economy in antibiotic pharmaceutical factory[J]. Waste Manage,2019,84:141−146.
    [2]
    JIANG M, SONG S, LIU H, WANG P, DAI X. Effect of gentamicin mycelial residues disintegration by microwave-alkaline pretreatment on methane production and gentamicin degradation during anaerobic digestion[J]. Chem Eng J,2021,414:128790.
    [3]
    LIAO H, ZHAO Q, CUI P, CHEN Z, YU Z, GEISEN S, FRIMAN V P, ZHOU S. Efficient reduction of antibiotic residues and associated resistance genes in tylosin antibiotic fermentation waste using hyperthermophilic composting[J]. Environ Int,2019,133:105203.
    [4]
    CHEN W, GENG Y, HONG J, KUA H W, XU C, YU N. Life cycle assessment of antibiotic mycelial residues management in China[J]. Renewable Sustainable Energy Rev,2017,79:830−838.
    [5]
    ZHANG S, CHEN Z, WEN Q, MA J, HE Z. Assessment of maturity during co-composting of penicillin mycelial dreg via fluorescence excitation-emission matrix spectra: Characteristics of chemical and fluorescent parameters of water-extractable organic matter[J]. Chemosphere,2016,155:358−366.
    [6]
    ZHANG Q-Q, YING G-G, PAN C-G, LIU Y-S, ZHAO J-L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environ Sci Technol,2015,49(11):6772−6782. doi: 10.1021/acs.est.5b00729
    [7]
    BERENDONK T U, MANAIA C M, MERLIN C, FATTA-KASSINOS D, CYTRYN E, WALSH F, BURGMANN H, SORUM H, NORSTROM M, PONS M N, KREUZINGER N, HUOVINEN P, STEFANI S, SCHWARTZ T, KISAND V, BAQUERO F, MARTINEZ J L. Tackling antibiotic resistance: the environmental framework[J]. Nat Rev Microbiol,2015,13(5):310−317. doi: 10.1038/nrmicro3439
    [8]
    BRIJ MOHAN S. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India[J]. Sci Total Environ,2019,646:1459−1467. doi: 10.1016/j.scitotenv.2018.07.235
    [9]
    PIñA B, BAYONA J M, CHRISTOU A, FATTA-KASSINOS D, GUILLON E, LAMBROPOULOU D, MICHAEL C, POLESEL F, SAYEN S. On the contribution of reclaimed wastewater irrigation to the potential exposure of humans to antibiotics, antibiotic resistant bacteria and antibiotic resistance genes – NEREUS COST Action ES1403 position paper[J]. J Environ Chem Eng,2020,8(1):102131. doi: 10.1016/j.jece.2018.01.011
    [10]
    LEMUS J A, BLANCO G, GRANDE J, ARROYO B, GARCIA-MONTIJANO M, MARTINEZ F. Antibiotics threaten wildlife: circulating quinolone residues and disease in Avian scavengers[J]. PLoS One,2008,3(1):e1444. doi: 10.1371/journal.pone.0001444
    [11]
    JIANG M, SONG S , LIU H, WANG P, DAI X. Effect of gentamicin mycelial residues disintegration by microwave-alkaline pretreatment on methane production and gentamicin degradation during anaerobic digestion[J]. Chem Eng J, 2021, 414: 128790.
    [12]
    PRICE L B, KOCH B J, HUNGATE B A. Ominous projections for global antibiotic use in food-animal production[J]. Proc Natl Acad Sci U S A,2015,112(18):5554−5555. doi: 10.1073/pnas.1505312112
    [13]
    FERRI M, RANUCCI E, ROMAGNOLI P, GIACCONE V. Antimicrobial resistance: A global emerging threat to public health systems[J]. Crit Rev Food Sci Nutr,2017,57(13):2857−2876. doi: 10.1080/10408398.2015.1077192
    [14]
    VASQUEZ M I, LAMBRIANIDES A, SCHNEIDER M, KUMMERER K, FATTA-KASSINOS D. Environmental side effects of pharmaceutical cocktails: What we know and what we should know[J]. J Hazard Mater,2014,279:169−189.
    [15]
    CHRISTOU A, MICHAEL C, FATTA-KASSINOS D, FOTOPOULOS V. Can the pharmaceutically active compounds released in agroecosystems be considered as emerging plant stressors?[J]. Environ Int,2018,114:360−364.
    [16]
    KON K, RAI M. Antibiotic resistance: Mechanisms and new antimicrobial approaches[M]. Ukraine: Academic press, 2016.
    [17]
    HAN H J, ZHENG S Y, MA W C, HUANG J H, CHEN L Y, LIU X, JIA S Y, MU J M. The current situation and treatment and disposal techniques of antibiotic bacterial residues in China[J]. Appl Mech Mater,2014,587−589:820−823.
    [18]
    CHEN Z, WANG Y, WEN Q, ZHANG S, YANG L. Feasibility study of recycling cephalosporin C fermentation dregs using co-composting process with activated sludge as co-substrate[J]. Environ Technol,2016,37(17):2222−2230. doi: 10.1080/09593330.2016.1146340
    [19]
    LAN J. Research on the application of Streptomyces avermitilisresidue in bio-compost and preparation of activated carbon[D]. Baotou: Inner Mongolia University of Science and Technology, 2021.
    [20]
    ZHANG H, GAO Z, AO W, LI J, LIU G, FU J, RAN C, MAO X, KANG Q, LIU Y. Microwave pyrolysis of textile dyeing sludge in a continuously operated auger reactor: char characterization and analysis[J]. J Hazard Mater,2017,334:112−120.
    [21]
    WANG Q, ZHANG Z, XU G, LI G. Pyrolysis of penicillin fermentation residue and sludge to produce biochar: Antibiotic resistance genes destruction and biochar application in the adsorption of penicillin in water[J]. J Hazard Mater,2021,413:125385.
    [22]
    CHEN Y, DU L, LI S, SONG W, JENSEN P A, LIN W. Pyrolysis of antibiotic mycelial dreg and characterization of obtained gas, liquid and biochar[J]. J Hazard Mater,2021,402:123826.
    [23]
    CHEN T, ZHANG Y, WANG H, LU W, ZHOU Z, ZHANG Y, REN L. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge[J]. Bioresour Technol,2014,164:47−54.
    [24]
    ZHANG G, LI C, MA D, ZHANG Z, XU G. Anaerobic digestion of antibiotic residue in combination with hydrothermal pretreatment for biogas[J]. Bioresour Technol,2015,192:257−265.
    [25]
    XIAO R, SUN X, WANG J, FENG J, LI R, ZHANG Z, WANG J J, AMJAD A. Characteristics and phytotoxicity assay of biochars derived from a Zn-rich antibiotic residue[J]. J Anal Appl Pyrolysis,2015,113:575−583.
    [26]
    FRANKLIN A M, AGA D S, CYTRYN E, DURSO L M, MCLAIN J E, PRUDEN A, ROBERTS M C, ROTHROCK JR M J, SNOW D D, WATSON J E. Antibiotics in agroecosystems: Introduction to the special section[J]. J Environ Qual,2016,45(2):377−393. doi: 10.2134/jeq2016.01.0023
    [27]
    TORRALBA-SANCHEZ T L, BYLASKA E J, SALTER-BLANC A J, MEISENHEIMER D E, LYON M A, TRATNYEK P G. Reduction of 1, 2, 3-trichloropropane (TCP): Pathways and mechanisms from computational chemistry calculations[J]. Environ Sci: Processes Impacts,2020,22(3):606−616. doi: 10.1039/C9EM00557A
    [28]
    DOU M, WANG J, GAO B, XU C, YANG F. Photocatalytic difference of amoxicillin and cefotaxime under visible light by mesoporous g-C3N4: Mechanism, degradation pathway and DFT calculation[J]. Biochem Eng J,2020,383:123134.
    [29]
    SONG W, ZHOU Y, WANG Z, LI J, ZHANG X, FU C, DU X, WANG Z, QIU W. Accelerate sulfamethoxazole degradation and detoxification by persulfate mediated with Fe2 + &dithionite: Experiments and DFT calculation[J]. J Hazard Mater, 2022, 436.
    [30]
    PELALAK R, ALIZADEH R, GHARESHABANI E, HEIDARI Z. Degradation of sulfonamide antibiotics using ozone-based advanced oxidation process: Experimental, modeling, transformation mechanism and DFT study[J]. Sci Total Environ,2020,734:139446.
    [31]
    MUSHTAQ M, CHUKWUDEBE A C, WRZESINSKI C, ALLEN L R, LUFFER-ATLAS D, ARISON B H. Photodegradation of emamectin benzoate in aqueous solutions[J]. J Agric Food Chem,1998,46(3):1181−1191. doi: 10.1021/jf970561i
    [32]
    BULL D, WAYNE G, MAC CONNELL J, GRUBER V, KU C. Fate of avermectin B1a in soil and plants[J]. J Agric Food Chem,1984,32(1):94−102. doi: 10.1021/jf00121a025
    [33]
    CROUCH L S, FEELY W F, ARISON B H, VANDENHEUVEL W J, COLWELL L F, STEARNS R A, KLINE W F, WISLOCKI P G. Photodegradation of avermectin B1a thin films on glass[J]. J Agric Food Chem,1991,39(7):1310−1319. doi: 10.1021/jf00007a024
    [34]
    MAYNARD M S, KU C C, JACOB T A. Fate of avermectin B1a on citrus fruits. 2. Distribution and magnitude of the avermectin B1a and carbon-14 residue on fruits from a picked fruit study[J]. J Agric Food Chem,1989,37(1):184−189. doi: 10.1021/jf00085a042
    [35]
    MOYE H A, MALAGODI M H, YOH J, DEYRUP C L, CHANG S M, LEIBEE G L, KU C C, WISLOCKI P G. Avermectin B1a metabolism in celery: a residue study[J]. J Agric Food Chem,1990,38(1):290−297. doi: 10.1021/jf00091a065
    [36]
    ZAIXING LI C S Æ J Y, JIANBO GUO L X. Biodegradation of avermectin by Bacteroidetes endosymbiont strain LYH[J]. World J Microbiol Biotechno,2008,24:361−366. doi: 10.1007/s11274-007-9482-8
    [37]
    WANG J, ZHAO B, LIU S, ZHU D, HUANG F, YANG H, GUAN H, SONG A, XU D, SUN L, XIE H, WEI W, ZHANG W, HELMER PEDERSEN T. Catalytic pyrolysis of biomass with Ni/Fe-CaO-based catalysts for hydrogen-rich gas: DFT and experimental study[J]. Energy Convers Manage,2022,254:115246.
    [38]
    WRZESINSKI C L, ARISON B H, SMITH J, ZINK D L, VANDENHEUVEL W J, CROUCH L S. Isolation and identification of residues of 4 ‘‘-(epi-methylamino)-4 ‘‘-deoxyavermectin B1a benzoate from the surface of cabbage[J]. J Agric Food Chem,1996,44(1):304−312. doi: 10.1021/jf9500142
    [39]
    FISHER M. Recent advances in avermectin research[J]. Pure Appl Chem,1990,62(7):1231−1240.
    [40]
    ADHIKARI S, RUSTUM A M. A comprehensive study to identify and characterize major degradation products of Ivermectin drug substance including its degradation pathways using LC-HRMS and NMR[J]. J Pharm Biomed Anal,2022,214:114730.
    [41]
    SHEN P, WU S, HU C, CHENG Z, WU J, LUO G, YAO H, MAO X, SONG M, YANG X. Effect of Al modification on the adsorption of As2O3 on the CaSiO3(001) surface: A DFT study[J]. J Mol Graphics Modell,2023,118:108357.
    [42]
    WANG J, ZHAO B, ZHU D, HUANG F, ZHANG W, YANG H, CHEN L, GUAN H, SUN L, YANG S. Mechanism on catalytic cracking tar with CaO-based catalysts for hydrogen-rich gas by DFT and experiments[J]. Int J Hydrogen Energy,2021,46(9):6522−6531. doi: 10.1016/j.ijhydene.2020.11.171
    [43]
    WANG M, LIU C, XU X, LI Q. Theoretical investigation on the carbon sources and orientations of the aldehyde group of furfural in the pyrolysis of glucose[J]. J Anal Appl Pyrolysis,2016,120:464−473.
    [44]
    ZHANG D, YIN L, ZHONG J, CHENG Q, CAI H, CHEN Y, ZHANG Q F. Ring-opening reactions of donor–acceptor cyclopropanes with cyclic ketals and thiol ketals11Electronic supplementary information (ESI) available: Experimental details, characterization data of reactants and products, and copies of NMR spectra.[J]. Org Biomol Chem,2020,18(33):6492−6496. doi: 10.1039/D0OB01530J
  • 2023-BZ-32_支撑材料.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (252) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return