Volume 51 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
ZHANG Qian-qian, ZHANG An-chao, MENG Fan-mao, LIU Yan-wen, SUN Zhi-jun, LI Hai-xia, ZHENG Hai-kun. Wet removal of elemental mercury by acid-assisted electrochemical oxidation method[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1496-1505. doi: 10.1016/S1872-5813(23)60371-8
Citation: ZHANG Qian-qian, ZHANG An-chao, MENG Fan-mao, LIU Yan-wen, SUN Zhi-jun, LI Hai-xia, ZHENG Hai-kun. Wet removal of elemental mercury by acid-assisted electrochemical oxidation method[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1496-1505. doi: 10.1016/S1872-5813(23)60371-8

Wet removal of elemental mercury by acid-assisted electrochemical oxidation method

doi: 10.1016/S1872-5813(23)60371-8
Funds:  The project was supported by the National Natural Science Foundation of China (51676064), the Program for Science & Technology Innovation Talents in Universities of Henan Province (19HASTIT045) and the Innovative Research Team of Henan Polytechnic University (T2020-3).
More Information
  • Corresponding author: E-mail: anchaozhang@126.com
  • Received Date: 2023-02-05
  • Accepted Date: 2023-03-31
  • Rev Recd Date: 2023-03-06
  • Available Online: 2023-06-14
  • Publish Date: 2023-10-10
  • As a global pollutant, mercury emission is increasingly restricted in recent years. It is urgent to explore a new and efficient mercury removal technology for coal-fired power plants. A new acid-assisted electrochemical oxidation (AEO) technique for mercury removal was proposed using platinum plate as cathode and fluorine-doped tin dioxide (FTO) glass as anode. The effects of acid type, acid concentration, applied direct current (DC) voltage, electrolyte type, SO2, NO and O2 on the Hg0 removal efficiency were carried out. The results indicated that the mercury removal efficiency increased with the increase of DC voltage and nitric acid concentration. When the concentration of nitric acid increased to 0.15 mol/L, the mercury removal efficiency remained unchanged. SO2 and NO inhibited the removal of Hg0 in AEO system, but the inhibition was reversible. Compared with the mercury removal efficiency under single experimental conditions, the mercury removal efficiency of electrochemical oxidation can reach 96% under the experimental conditions of 0.1 mol/L nitric acid and 4V DC voltage, suggesting that the synergistic effect of nitric acid and DC voltage plays a key role. According to the experimental results, the mechanism of Hg0 removal in AEO system was analyzed. At the anode, Hg0 was oxidized by hydroxyl radical (OH) generated by the oxidation reaction on the anode surface. At the cathode, dissolved oxygen or O2 adsorbed on the surface of Pt is reduced to form anionic superoxide radicals (${\rm{O}}_2^- $). Moreover, parts of ${\rm{O}}_2^- $ would produce OH with the aid of electron at acidic condition. Free radicals capture experiments showed that O$_2^- $ and OH were the main active substances for the removal of Hg0 by acid-assisted electrochemical method. The research is helpful for the development of effective electrochemical techniques for industrial mercury removal and recycling of industrial acid waste.
  • loading
  • [1]
    LIU Z Y, YANY W, XU W, LIU Y X. Removal of elemental mercury by bio-chars derived from seaweed impregnated with potassium iodine[J]. Chem Eng J,2018,339:468−478. doi: 10.1016/j.cej.2018.01.148
    [2]
    WANG X Q, ZHOU Y N, LI R, WANG L L, TAO L, NING P. Removal of Hg0 from a simulated flue gas by photocatalytic oxidation on Fe and Ce co-doped TiO2 under low temperature[J]. Chem Eng J,2018,360:1530−1541.
    [3]
    SU Yin-jiao, TENG Yang, ZHANG Kai, LI Li-feng, WANG Peng-cheng, LI Zhen. Migration and transformation of mercury in WFGD slurry from a coal-fired power unit and the effect of additive on mercury stability in gypsum[J]. J Fuel Chem Technol,2021,49(7):1022−1033. ) doi: 10.19906/j.cnki.jfct.2021055
    [4]
    ZHOU P Y, ZHANG A C, ZHANG D, FENG C X, SU S, ZHANG X M, XIANG J, Chen G Y, WANG Y. Efficient removal of Hg0 from simulated flue gas by novel magnetic Ag2WO4/BiOI/CoFe2O4 photocatalysts[J]. Chem Eng J,2019,373:780−791. doi: 10.1016/j.cej.2019.05.060
    [5]
    ZHAO Y, HAO R L, GUO Q. A novel pre-oxidation method for elemental mercury removal utilizing a complex vaporized absorbent[J]. J Hazard Mater,2014,280:118−126. doi: 10.1016/j.jhazmat.2014.07.061
    [6]
    HUANG H, HU H, ANNANUROV S, PEI K Y, CHEN J X, YUAN S C. Interaction among the simultaneous removal of SO2, NO and Hg0 by electrochemical catalysis in K2S2O8[J]. Fuel,2020,260:116323. doi: 10.1016/j.fuel.2019.116323
    [7]
    GAO Tian, XIAO Ri-hong, CHUAI Xing, XIONG Zhuo, WEI Geng, LI Tie, YANG Kai, LI Guo, ZHAO Yong-chun, ZHANG Jun-ying. Study on mercury emission characteristics of circulating fluidized bed boiler and pulverized coal boiler[J]. J Fuel Chem Technol,2022,50(3):275−282. ) doi: 10.19906/j.cnki.jfct.2021075
    [8]
    GENG X Z, HU J W, DUAN Y F, TANG H J, HUANG T F, XU Y F, REN S J, LIU M. The effect of mechanical-chemical-brominated modification on physicochemical properties and mercury removal performance of coal-fired by-product[J]. Fuel,2020,260:117041.
    [9]
    HE C, SHEN B X, CHEN J H, CAI J. Adsorption and oxidation of elemental mercury over Ce-MnOx/TiPILCs[J]. Environ Sci Technol,2014,48:7891−7898. doi: 10.1021/es5007719
    [10]
    LIU D J, YANG L T, WU J, LI B. Tuning sulfur vacancies in CoS2 via a molten salt approach for promoted mercury vapor adsorption[J]. Chem Eng J,2022,450:137956. doi: 10.1016/j.cej.2022.137956
    [11]
    ZHANG M Z, WANG J, ZHANG Y H, ZHANG M G, ZHOU Y F, PHOUTTHAVONG T, LIANG P, ZHANG H W. Simultaneous removal of NO and Hg0 in flue gas over Co-Ce oxide modified rod-like MnO2 catalyst: Promoting effect of Co doping on activity and SO2 resistance[J]. Fuel,2020,276:118018. doi: 10.1016/j.fuel.2020.118018
    [12]
    XU W, HUSSAIN A, LIU Y X. A review on modification methods of adsorbents for elemental mercury from flue gas[J]. Chem Eng J,2018,346:692−711. doi: 10.1016/j.cej.2018.03.049
    [13]
    ZHANG H W, SUN H M, ZHANG D Y, ZHANG W R, CHEN S J, LI M, LIANG P. Nanoconfinement of Ag nanoparticles inside mesoporous channels of MCM-41 molecule sieve as a regenerable and H2O resistance sorbent for Hg0 removal in natural gas[J]. Chem Eng J,2019,361:139−147. doi: 10.1016/j.cej.2018.12.059
    [14]
    ZHOU Wen-bo, NIU Sheng-li, WANG Jun, LI Ying, HAN Kui-hua, WANG Yong-zheng, LU Chun-mei, ZHU Ying. Study on the adsorption and oxidation mechanism of mercury by HCl over γ-Fe2O3 catalyst[J]. J Fuel Chem Technol,2021,49(11):1716−1723. ) doi: 10.1016/S1872-5813(21)60098-1
    [15]
    XIAO Y X, TAN S Q, WANG D L, WU J, JIA T, LIU Q Z, QI Y F, QI X M, HE P, ZHOU M. CeO2/BiOIO3 heterojunction with oxygen vacancies and Ce4 + /Ce3 + redox centers synergistically enhanced photocatalytic removal heavy metal[J]. Appl Surf Sci,2020,530:147116. doi: 10.1016/j.apsusc.2020.147116
    [16]
    ZHOU C S, SUN L S, ZHANG A C, WU X F, MA C, SU S, HU S, XIANG J. Fe3-xCuxO4 as highly active heterogeneous Fenton-like catalysts toward elemental mercury removal[J]. Chemosphere,2015,125:16−24. doi: 10.1016/j.chemosphere.2014.12.082
    [17]
    ZHOU Y N, LI R, TAO L, LI R J, WANG X Q, NING P. Solvents mediated-synthesis of 3D-BiOX (X = Cl, Br, I) microspheres for photocatalytic removal of gaseous Hg0 from the zinc smelting flue gas[J]. Fuel,2020,268:117211. doi: 10.1016/j.fuel.2020.117211
    [18]
    ZHANG M J, YANG G, LIU S, YU J H, LI H Z, ZHANG L W, CHEN Y P, GUO R T, WU T. MoS2 quantum dots based MoS2/HKUST-1 composites for the highly efficient catalytic oxidation of elementary mercury[J]. J Environ Sci,2022,116:163−174. doi: 10.1016/j.jes.2021.08.019
    [19]
    AN M, YUAN N N, GUO Q J, WEI X Y. Role of CuFe2O4 in elemental mercury adsorption and oxidation on modified bentonite for coal gasification[J]. Fuel,2022,328:125231. doi: 10.1016/j.fuel.2022.125231
    [20]
    CHENG H Q, WU J, TIAN F G, LIU Q Z, QI X M, LI Q W, PAN W G, LI Z Z, WEI J. Visible-light photocatalytic oxidation of gas-phase Hg0 by colored TiO2 nanoparticle-sensitized Bi5O7I nanorods: Enhanced interfacial charge transfer based on heterojunction[J]. Chem Eng J,2019,360:951−963. doi: 10.1016/j.cej.2018.07.093
    [21]
    BRILLAS E, MARTINEZ-HUITLE C A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review[J]. Appl Catal B: Environ, 2015, 166–167: 603–643.
    [22]
    MIN S J, KIM J G, BEAK K. Role of carbon fiber electrodes and carbonate electrolytes in electrochemical phenol oxidation[J]. J Hazard Mater,2020,400:123083. doi: 10.1016/j.jhazmat.2020.123083
    [23]
    RAJASEKHAR B, NAMBI I M, GOVINDARAJAN S K. Investigating the degradation of nC12 to nC23 alkanes and PAHs in petroleum-contaminated water by electrochemical advanced oxidation process using an inexpensive Ti/Sb-SnO2/PbO2 anode[J]. Chem Eng J,2021,404:125268. doi: 10.1016/j.cej.2020.125268
    [24]
    NIDHEESH P V, KUMAR A, SYAM BABU D, SCARIA J, SURESH KUMAR M. Treatment of mixed industrial wastewater by electrocoagulation and indirect electrochemical oxidation[J]. Chemosphere,2020,251:126437. doi: 10.1016/j.chemosphere.2020.126437
    [25]
    ZHOU C S, YANG H M, QI D X, SUN J X, CHEN J M, ZHANG Z Y, MAO L, SONG Z J, SUN L S. Insights into the heterogeneous Hg0 oxidation mechanism by H2O2 over Fe3O4 (0 0 1) surface using periodic DFT method[J]. Fuel,2018,216:513−520. doi: 10.1016/j.fuel.2017.12.004
    [26]
    LIU Y X, LI Y, XU H, XU J J. Oxidation removal of gaseous Hg0 using enhanced-Fenton system in a bubble column reactor[J]. Fuel,2019,246:358−364. doi: 10.1016/j.fuel.2019.03.018
    [27]
    CHEN Y F, WU J J, LIU R Z, LIU C Z, LIU L F, LI R L, ZHANG H, PANG J T, LIU D Z. Application of waste acid from phosphogysum dam as an eco-friendly depressant in collophane flotation[J]. J Clean Prod,2020,267:122184. doi: 10.1016/j.jclepro.2020.122184
    [28]
    ZHOU J, YU Q, HUANG Y, MENG J J, CHEN Y D, NING S Y, WANG X P, WEI Y Z, YIN X B, LIANG J. Recovery of scandium from white waste acid generated from the titanium sulphate process using solvent extraction with TRPO[J]. Hydrometallurgy,2020,195:105398. doi: 10.1016/j.hydromet.2020.105398
    [29]
    GOVINDAN K, RAJA M, NOEL M, JAMES E J. Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxide[J]. J Hazard Mater,2014,272:42−51. doi: 10.1016/j.jhazmat.2014.02.036
    [30]
    MIDASSI S, BEDOUI A, BENSALAH N. Efficient degradation of chloroquine drug by electro-Fenton oxidation: Effects of operating conditions and degradation mechanism[J]. Chemosphere,2020,260:127558. doi: 10.1016/j.chemosphere.2020.127558
    [31]
    ZHANG Q Q, ZHANG A C, LI H, ZHANG X M, SUN Z J, MEI Y Y, XIANG J, SU S, TAN Z Q, LU H. FeNi3 foam as cathode catalyst in electrocatalytic peroxydisulfate system for enhanced Hg0 removal from simulated flue gas[J]. J Environ Chem Eng,2023,11:109384. doi: 10.1016/j.jece.2023.109384
    [32]
    SEO B, LEE W H, SA Y J, LEE U, OH H-S, LEE H. Electrochemical oxidation of toluene with controlled selectivity: The effect of carbon anode[J]. Appl Surf Sci,2020,534:147517. doi: 10.1016/j.apsusc.2020.147517
    [33]
    BENSALAH N, MIDASSI S, AHMAD M I, BEDOUI A. Degradation of hydroxychloroquine by electrochemical advanced oxidation processes[J]. Chem Eng J,2020,402:126279. doi: 10.1016/j.cej.2020.126279
    [34]
    ZHU Y S, QIU S, DENG F X, MA F, ZHENG Y S. Degradation of sulfathiazole by electro-Fenton using a nitrogen-doped cathode and a BDD anode: Insight into the H2O2 generation and radical oxidation[J]. Sci Total Environ,2020,722:137853. doi: 10.1016/j.scitotenv.2020.137853
    [35]
    CAO L M, YANG J, XU Y, SUN W, SHEN Q C, ZHOU J C, YANG J. The coupling use of electro-chemical and advanced oxidation to enhance the gaseous elemental mercury removal in flue gas[J]. Sep Purif Technol,2021,257:117883. doi: 10.1016/j.seppur.2020.117883
    [36]
    SAVIC B G, STANKOVIC D M, ZIVKOVIC S M, OGNJANOVIC M R, TASIC G S, MIHAJLOVIC I J, BRDARIC T P. Electrochemical oxidation of a complex mixture of phenolic compounds in the base media using PbO2-GNRs anodes[J]. Appl Surf Sci,2020,529:147120. doi: 10.1016/j.apsusc.2020.147120
    [37]
    TAVAN Y, SHANHROKHI M, FARHADI F. Electrochemical oxidative desulfurization for high sulfur content crude gasoil[J]. Sep Purif Technol,2020,248:117117. doi: 10.1016/j.seppur.2020.117117
    [38]
    CHEN Z Y, XIE G Y, PAN Z C, ZHOU X, LAI W K, ZHENG L, XU Y B. A novel Pb/PbO2 electrodes prepared by the method of thermal oxidation-electrochemical oxidation: Characteristic and electrocatalytic oxidation performance[J]. J Alloy Compd,2021,851:156834. doi: 10.1016/j.jallcom.2020.156834
    [39]
    GOMEZ J M, GABALDON M G, ABAD J C, MONTANES M T, MESTRE S, HERRANZ V P. Influence of the reactor configuration and the supporting electrolyte concentration on the electrochemical oxidation of Atenolol using BDD and SnO2 ceramic electrodes[J]. Appl Surf Sci,2020,241:116684.
    [40]
    AHMADPOUR S, TASHKHOURIAN J, HEMMATEENEJAD B. A chemometric investigation on the influence of the nature and concentration of supporting electrolyte on charging currents in electrochemistry[J]. J Electroanalytical Chem, 2020, 871: 114296.
    [41]
    ZHU X P, NI J R, LAI P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes[J]. Water Res,2009,43:4347−4355. doi: 10.1016/j.watres.2009.06.030
    [42]
    SOHRABNEJAD-ESKAN I, GORYACHEV A, EXNER K S, KIBLER L A, HENSEN E J M, HOFMANN J P, OVER H. Temperature-dependent kinetic studies of the chlorine evolution reaction over RuO2 (110) model electrodes[J]. ACS Catal,2017,7:2403−2411. doi: 10.1021/acscatal.6b03415
    [43]
    DENG Y, ZHU X, CHEN N, FENG C P, WANG H S, KUANG P J, HU W W. Review on electrochemical system for landfill leachate treatment: Performance, mechanism, application, shortcoming, and improvement scheme[J]. Sci Total Environ,2020,745:140768. doi: 10.1016/j.scitotenv.2020.140768
    [44]
    ZHANG Y, LI J H, BAI J, LI L S, CHEN S, ZHOU T S, WANG J C, XIA L G, XU Q J, ZHOU B X. Extremely efficient decomposition of ammonia N to N2 using ClO from reactions of HO and HOCl generated in situ on a novel bifacial photoelectroanode[J]. Environ Sci Technol,2019,53:6945−6953. doi: 10.1021/acs.est.9b00959
    [45]
    ZHANG A C, ZHANG L X, LU H, CHEN G Y, LIU Z C, XIANG J, SUN L S. Facile synthesis of ternary Ag/AgBr-Ag2CO3 hybrids with enhanced photocatalytic removal of elemental mercury driven by visible light[J]. J Hazard Mater,2016,314:78−87. doi: 10.1016/j.jhazmat.2016.04.032
    [46]
    LIN H, ZHANG H, HOU L W. Degradation of C. I. Acid Orange 7 in aqueous solution by a novel electro/Fe3O4/PDS process[J]. J Hazard Mater,2014,276:182−191. doi: 10.1016/j.jhazmat.2014.05.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (137) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return