Volume 52 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
ZHANG Hongke, WANG Weichen, XIANG Zhiyu, ZHOU Fangyuan, ZHU Wanbin, WANG Hongliang. Ni supported on Ti-doped SBA-15 catalyst for the selective hydrodeoxygenation conversion of lignin derivatives[J]. Journal of Fuel Chemistry and Technology, 2024, 52(4): 536-544. doi: 10.1016/S1872-5813(23)60387-1
Citation: ZHANG Hongke, WANG Weichen, XIANG Zhiyu, ZHOU Fangyuan, ZHU Wanbin, WANG Hongliang. Ni supported on Ti-doped SBA-15 catalyst for the selective hydrodeoxygenation conversion of lignin derivatives[J]. Journal of Fuel Chemistry and Technology, 2024, 52(4): 536-544. doi: 10.1016/S1872-5813(23)60387-1

Ni supported on Ti-doped SBA-15 catalyst for the selective hydrodeoxygenation conversion of lignin derivatives

doi: 10.1016/S1872-5813(23)60387-1
Funds:  The project was supported by the National Key Research and Development Program (2018YFB1501500), the China Agricultural University Foundation 2115 Talent Training Program (1011-00109018), and the Beijing Modern Agricultural Industry Technology System Innovation Team BAIC08-2022.
  • Received Date: 2023-07-12
  • Accepted Date: 2023-09-13
  • Rev Recd Date: 2023-08-28
  • Available Online: 2023-11-10
  • Publish Date: 2024-04-03
  • The development of cost-effective and efficient catalysts plays a critical role in the selective hydrodeoxygenation of lignin derivatives for lignin valorization. Herein, we reported “metal-acid” bifunctional catalysts (Ni/Ti-SBA-15) consist of Ni nanoparticles highly dispersed on Ti doped SBA-15, which achieved 100% vanillin conversion and 96.46% selectivity of 2-methoxy-4-methylphenol (MMP) under mild conditions. Characterizations were employed to reveal the morphology and physicochemical properties of the catalysts. The results indicated that doping of Ti species not only increased the number of acidic sites but also promoted the high dispersion of Ni nanoparticles on the support. This research provides a novel concept for the synthesis of cost-effective and efficient catalysts, which contributes to the environmentally friendly and economical conversion of biomass derivatives.
  • loading
  • [1]
    WANG H L, PU Y Q, RAGAUSKAS A, et al. From lignin to valuable products-strategies, challenges, and prospects[J]. Bioresour Technol,2019,271:449−461. doi: 10.1016/j.biortech.2018.09.072
    [2]
    WANG H L, YANG B, ZHANG Q, et al. Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons[J]. Renewable Sustainable Energy Rev,2020,120:109612. doi: 10.1016/j.rser.2019.109612
    [3]
    QIU Z G, HE X X, LI Z Q, et al. CoZn/N-doped porous carbon derived from bimetallic zeolite imidazolate framework/g-C3N4 for efficient hydrodeoxygenation of vanillin[J]. Catal Sci Technol,2022,12(16):5178−5188. doi: 10.1039/D2CY00642A
    [4]
    ZHANG L K, SHANG N Z, GAO S T, et al. Atomically dispersed Co catalyst for efficient hydrodeoxygenation of lignin-derived species and hydrogenation of nitroaromatics[J]. ACS Catal,2020,10(15):8672−8682. doi: 10.1021/acscatal.0c00239
    [5]
    JIANG J Y, DING W T, ZHANG W, et al. Defect-rich ZrO2 anchored Pd nanoparticles for selective hydrodeoxygenation of bio-models at room temperature[J]. Fuel,2022,318:123529. doi: 10.1016/j.fuel.2022.123529
    [6]
    ARORA S, GUPTA N, SINGH V. Improved Pd/Ru metal supported graphene oxide nano-catalysts for hydrodeoxygenation (HDO) of vanillyl alcohol, vanillin and lignin[J]. Green Chem,2020,22(6):2018−2027. doi: 10.1039/D0GC00052C
    [7]
    LIAO Q L, SHI M, ZHANG Q X, et al. Gold catalyst anchored to pre-reduced Co3O4 nanorods for the hydrodeoxygenation of vanillin using alcohols as hydrogen donors[J]. ACS Appl Mater Inter,2022,14(3):3939−3948. doi: 10.1021/acsami.1c18197
    [8]
    李秉硕, 冯薜萱, 吴开页, 等. Ni-Cu-Ru/HZSM-5催化木质素生物油加氢脱氧制芳香烃的研究[J]. 燃料化学学报(中英文),2023,51(3):358−366.

    LI Bingshuo, FENG Xuexuan, WU Kaiye, et al. Hydrodeoxygenation of lignin derived bio-oil into aromatic hydrocarbons over Ni-Cu-Ru/HZSM-5 catalyst[J]. J Fuel Chem Technol,2023,51(3):358−366.
    [9]
    YANG H H, NIE R F, XIA W, et al. Co embedded within biomass-derived mesoporous N-doped carbon as an acid-resistant and chemoselective catalyst for transfer hydrodeoxygenation of biomass with formic acid[J]. Green Chem,2017,19(23):5714−5722. doi: 10.1039/C7GC02648J
    [10]
    VERMA D, INSYANI R, CAHYADI H S, et al. Ga-doped Cu/H-nanozeolite-Y catalyst for selective hydrogenation and hydrodeoxygenation of lignin-derived chemicals[J]. Green Chem,2018,20(14):3253−3270. doi: 10.1039/C8GC00629F
    [11]
    GAO J, CAO Y, LUO G, et al. High-efficiency catalytic hydrodeoxygenation of lignin-derived vanillin with nickel-supported metal phosphate catalysts[J]. Chem Eng J,2022,448:137723. doi: 10.1016/j.cej.2022.137723
    [12]
    FAN R Y, HU Z, CHEN C, et al. Highly dispersed nickel anchored on a N-doped carbon molecular sieve derived from metal-organic frameworks for efficient hydrodeoxygenation in the aqueous phase[J]. Chem Commun,2020,56(49):6696−6699. doi: 10.1039/D0CC02620D
    [13]
    ZHANG Z, XU H, LI H. Insights into the catalytic performance of Ni/Nb2O5 catalysts for vanillin hydrodeoxygenation in aqueous phase: The role of Nb2O5 crystal structures[J]. Fuel,2022,324(B):124400.
    [14]
    YUE X K, ZHANG L H, SUN L X, et al. Highly efficient hydrodeoxygenation of lignin-derivatives over Ni-based catalyst[J]. Appl Catal B: Environ,2021,293:120243. doi: 10.1016/j.apcatb.2021.120243
    [15]
    KANG Y, RAO X R, YUAN P, et al. Al-functionalized mesoporous SBA-15 with enhanced acidity for hydroisomerization of n-octane[J]. Fuel Process Technol,2021,215:106765. doi: 10.1016/j.fuproc.2021.106765
    [16]
    BERUBE F, NOHAIR B, KLEITZ F, et al. Controlled postgrafting of titanium chelates for improved synthesis of Ti-SBA-15 epoxidation catalysts[J]. Chem Mater,2010,22(6):1988−2000. doi: 10.1021/cm9030667
    [17]
    WEN M C, SONG S N, ZHAO W N, et al. Atomically dispersed Pd sites on Ti-SBA-15 for efficient catalytic combustion of typical gaseous VOCs[J]. Environ Sci-Nano,2021,8(12):3735−3745. doi: 10.1039/D1EN00744K
    [18]
    WANG X C, WANG Z Q, ZHOU L L, et al. Efficient hydrodeoxygenation of guaiacol to phenol over Ru/Ti-SiO2 catalysts: the significance of defect-rich TiOx species[J]. Green Chem,2022,24(15):5822−5834. doi: 10.1039/D2GC01714H
    [19]
    DEVI P, DAS U, DALAI A K. Production of glycerol carbonate using a novel Ti-SBA-15 catalyst[J]. Chem Eng J,2018,346:477−488. doi: 10.1016/j.cej.2018.04.030
    [20]
    LEDESMA B C, ANUNZIATA O A, BELTRAMONE A R. HDN of indole over Ir-modified Ti-SBA-15[J]. Appl Catal B: Environ,2016,192:220−233. doi: 10.1016/j.apcatb.2016.03.066
    [21]
    WANG W C, SHENG T, CHEN S S, et al. Defect engineering of metal-organic framework for highly efficient hydrodeoxygenation of lignin derivates in water[J]. Chem Eng J,2023,453(2):139711.
    [22]
    SULLIVAN M M, BHAN A. Acetone hydrodeoxygenation over bifunctional metallic-acidic molybdenum carbide catalysts[J]. ACS Catal,2016,6(2):1145−1152. doi: 10.1021/acscatal.5b02656
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (148) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return