Volume 52 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
WANG Shiwei, YANG Jinhai, ZHOU Hongli, XIAO Fukui, ZHAO Ning. Performance of Cu-Mn-Zn/ZrO2 catalysts for methanol synthesis from CO2 hydrogenation: The effect of Zn content[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 293-304. doi: 10.1016/S1872-5813(23)60391-3
Citation: WANG Shiwei, YANG Jinhai, ZHOU Hongli, XIAO Fukui, ZHAO Ning. Performance of Cu-Mn-Zn/ZrO2 catalysts for methanol synthesis from CO2 hydrogenation: The effect of Zn content[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 293-304. doi: 10.1016/S1872-5813(23)60391-3

Performance of Cu-Mn-Zn/ZrO2 catalysts for methanol synthesis from CO2 hydrogenation: The effect of Zn content

doi: 10.1016/S1872-5813(23)60391-3
Funds:  The project was supported by Fundamental Research Program of Shanxi Province (202203021221303), Science and Technology Major Project of Shanxi Province (202005D121002), The Central Project Guide Local Science and Technology for Development (2020SW26).
More Information
  • A series of Cu-Mn-Zn/ZrO2 catalysts with different Zn contents were prepared by sol-gel method and characterized by XRD, BET, TPR, N2O-adsorption, XPS, TPD and in-situ DRIFTS. It was found that by increasing a certain amount of Zn, the catalytic activity for CO2 hydrogenation increased. Among all samples, Cu3MnZn0.5Zr0.5 (CMZZ-0.5) possessed the best CO2 conversion (6.5%) and methanol selectivity (73.7%) at 250 °C and 5 MPa. Characterization results showed that Zn entered the Cu1.5Mn1.5O4 spinel structure, forming ZnOx and thus more surface OH groups. This increased the content of Cu0 and Cuα+, which improved the activation of H2 and CO2. The pathway of CO2 to methanol was also clarified through in-situ DRIFTS.
  • loading
  • [1]
    ATSBHA T A, YOON T, SEONGHO P, et al. A review on the catalytic conversion of CO2 using H2 for synthesis of CO, methanol and hydrocarbons[J]. J CO2 Util,2021,44:101413. doi: 10.1016/j.jcou.2020.101413
    [2]
    SUN J, LIU F, SALAHUDDIN U, et al. Optimization and understanding of ZnO nanoarray supported Cu-ZnO-Al2O3 catalyst for enhanced CO2-methanol conversion at low temperature and pressure[J]. Chem Eng J,2023,455:140559. doi: 10.1016/j.cej.2022.140559
    [3]
    MARCOS F C F, ALVIM R S, LIN L, et al. The role of copper crystallization and segregation toward enhanced methanol synthesis via CO2 hydrogenation over CuZrO2 catalysts: A combined experimental and computational study[J]. Chem Eng J,2023,452:139519. doi: 10.1016/j.cej.2022.139519
    [4]
    GUO T, GUO Q, LI S, et al. Effect of surface basicity over the supported Cu-ZnO catalysts on hydrogenation of CO2 to methanol[J]. J Catal,2022,407:312−321. doi: 10.1016/j.jcat.2022.01.035
    [5]
    MALIK A S, ZAMAN S F, AL-ZAHRANI A A, et al. Selective hydrogenation of CO2 to CH3OH and in-depth DRIFT analysis for PdZn/ZrO2 and CaPdZn/ZrO2 catalysts[J]. Catal Today,2020,357:573−582. doi: 10.1016/j.cattod.2019.05.040
    [6]
    PARK K, HAKEEM D A, CHA J S. Synthesis and structural properties of thermoelectric Ca3_xAgxCo4O9+delta powders[J]. Dalton Trans,2016,45(16):6990−6997. doi: 10.1039/C5DT04959H
    [7]
    DUMA Z G, MOMA J, LANGMI H W, et al. Towards high CO2 conversions using Cu/Zn catalysts supported on aluminum fumarate metal-organic framework for methanol synthesis[J]. Catalysts,2022,12(10):1104. doi: 10.3390/catal12101104
    [8]
    HAN X, LI M, CHANG X, et al. Hollow structured Cu@ZrO2 derived from Zr-MOF for selective hydrogenation of CO2 to methanol[J]. J Energy Chem,2022,71:277−287. doi: 10.1016/j.jechem.2022.03.034
    [9]
    SINGH R, PANDEY V, PANT K K. Promotional role of oxygen vacancy defects and Cu-Ce interfacial sites on the activity of Cu/CeO2 catalyst for CO2 hydrogenation to methanol[J]. ChemCatChem,2022,14(24):e202201053. doi: 10.1002/cctc.202201053
    [10]
    XU Y, GAO Z, PENG L, et al. A highly efficient Cu/ZnOx/ZrO2 catalyst for selective CO2 hydrogenation to methanol[J]. J Catal,2022,414:236−244. doi: 10.1016/j.jcat.2022.09.011
    [11]
    MURTHY P S, LIANG W, JIANG Y, et al. Cu-Based nanocatalysts for CO2 hydrogenation to methanol[J]. Energy Fuels,2021,35(10):8558−8584.
    [12]
    WANG Y, WANG G, VAN DER WAL L I, et al. Visualizing element migration over bifunctional metal-zeolite Catalysts and its impact on catalysis[J]. Angew Chem Int Ed,2021,60:17735−17743. doi: 10.1002/anie.202107264
    [13]
    LI J W, DOU L G, GAO Y, et al. Revealing the active sites of the structured Ni-based catalysts for one-step CO2/CH4 conversion into oxygenates by plasma-catalysis[J]. J CO2 Util,2021,52:101675. doi: 10.1016/j.jcou.2021.101675
    [14]
    NEZAM I, ZHOU W, GUSMAO G S, et al. Direct aromatization of CO2 via combined CO2 hydrogenation and zeolite-based acid catalysis[J]. J CO2 Util,2021,45:101405. doi: 10.1016/j.jcou.2020.101405
    [15]
    HADDED A, MASSOUDI J, DHAHRI E, et al. Structural, optical and dielectric properties of Cu1.5Mn1.5O4 spinel nanoparticles[J]. RSC Adv,2020,10(69):42542−42556. doi: 10.1039/D0RA08405K
    [16]
    LI F, ZHANG R K, LI Q M, et al. Preparation of ultrafine Cu1.5Mn1.5O4 spinel nanoparticles and its application in p-nitrophenol reduction[J]. Res Chem Intermed,2017,43(11):6505−6519. doi: 10.1007/s11164-017-3001-9
    [17]
    WANG J J, TIAN P, LI K X, et al. The excellent performance of nest-like oxygen-deficient Cu1.5Mn1.5O4 applied in activated carbon air-cathode microbial fuel cell[J]. Bioresour Technol,2016,222:107−113. doi: 10.1016/j.biortech.2016.09.126
    [18]
    NAKAMURA J, NAKAMURA I, UCHIJIMA T, et al. A surface science investigation of methanol synthesis over a Zn-deposited polycrystalline Cu surface[J]. J Catal,1996,160(1):65−75. doi: 10.1006/jcat.1996.0124
    [19]
    FUJITANI T, NAKAMURA I, UCHIJIMA T, et al. The kinetics and mechanism of methanol synthesis by hydrogenation of CO2 over a Zn-deposited Cu(111) surface[J]. Surf Sci,1997,383(2):285−298.
    [20]
    HU J, LI Y Y, ZHEN Y P, et al. In situ FTIR and ex situ XPS/HS-LEIS study of supported Cu/Al2O3 and Cu/ZnO catalysts for CO2 hydrogenation[J]. Chin J Catal,2021,42(3):367−375. doi: 10.1016/S1872-2067(20)63672-5
    [21]
    WANG S W, YANG J H, WANG S Q, et al. Effect of Cu and Zn on the performance of Cu-Mn-Zn/ZrO2 catalysts for CO2 hydrogenation to methanol[J]. Fuel Process Technol,2023,247:107789. doi: 10.1016/j.fuproc.2023.107789
    [22]
    WITOON T, CHALORNGTHAM J, DUMRONGBUNDITKUL P, et al. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases[J]. Chem Eng J,2016,293:327−336. doi: 10.1016/j.cej.2016.02.069
    [23]
    L'HOSPITAL V, ANGELO L, ZIMMERMANN Y, et al. Influence of the Zn/Zr ratio in the support of a copper-based catalyst for the synthesis of methanol from CO2[J]. Catal Today,2021,369:95−104. doi: 10.1016/j.cattod.2020.05.018
    [24]
    ZHAN H J, LI F, XIN C L, et al. Performance of the La-Mn-Zn-Cu-O based perovskite precursors for methanol synthesis from CO2 hydrogenation[J]. Catal Lett,2015,145(5):1177−1185. doi: 10.1007/s10562-015-1513-8
    [25]
    DONG X S, LI F, ZHAO N, et al. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method[J]. Appl Catal B: Environ,2016,191:8−17. doi: 10.1016/j.apcatb.2016.03.014
    [26]
    ZHAN H J, LI F, GAO P, et al. Methanol synthesis from CO2 hydrogenation over La-M-Cu-Zn-O (M=Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors[J]. J Power Sources,2014,251:113−21. doi: 10.1016/j.jpowsour.2013.11.037
    [27]
    ARENA F, ITALIANO G, BARBERA K, et al. Basic evidences for methanol-synthesis catalyst design[J]. Catal Today,2009,143(1):80−85.
    [28]
    AN B, ZHANG J Z, CHENG K, et al. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2[J]. J Am Chem Soc,2017,139(10):3834−3840. doi: 10.1021/jacs.7b00058
    [29]
    DHAGE P, SAMOKHVALOV A, REPALA D, et al. Regenerable Fe-Mn-ZnO/SiO2 sorbents for room temperature removal of H2S from fuel reformates: performance, active sites, operando studies[J]. Phys Chem Chem Phys,2011,13(6):2179−2187. doi: 10.1039/C0CP01355B
    [30]
    ALABSI M H, CHEN X, WANG X, et al. Highly dispersed Pd nanoparticles supported on dendritic mesoporous CeZrZnOx for efficient CO2 hydrogenation to methanol[J]. J Catal,2022,413:751−761. doi: 10.1016/j.jcat.2022.07.029
    [31]
    XIE Y, CHEN J, WU X, et al. Frustrated Lewis pairs boosting low-temperature CO2 methanation performance over Ni/CeO2 nanocatalysts[J]. ACS Catal,2022,12(17):10587−10602. doi: 10.1021/acscatal.2c02535
    [32]
    WANG S Q, YANG J H, WANG S W, et al. Effect of preparation method on the performance of Cu-Mn-(La)-Zr catalysts for CO2 hydrogenation to methanol[J]. ChemCatChem,2022,14(23):e202200957. doi: 10.1002/cctc.202200957
    [33]
    LIU X, LUO J, WANG H, et al. In situ spectroscopic characterization and theoretical calculations identify partially reduced ZnO1−x/Cu interfaces for methanol synthesis from CO2[J]. Angew Chem Int Ed Eng,2022,61(23):e202202330. doi: 10.1002/anie.202202330
    [34]
    CHEN S Y, ZHANG J F, SONG F E, et al. Induced high selectivity methanol formation during CO2 hydrogenation over a CuBr2-modified CuZnZr catalyst[J]. J Catal,2020,389:47−59. doi: 10.1016/j.jcat.2020.05.023
    [35]
    CHEN K, YU J, LIU B, et al. Simple strategy synthesizing stable CuZnO/SiO2 methanol synthesis catalyst[J]. J Catal,2019,372:163−173. doi: 10.1016/j.jcat.2019.02.035
    [36]
    RODRIGUEZ J A, LIU P, STACCHIOLA D J, et al. Hydrogenation of CO2 to methanol: Importance of metal-oxide and metal-carbide interfaces in the activation of CO2[J]. ACS Catal,2015,5(11):6696−6706. doi: 10.1021/acscatal.5b01755
    [37]
    WANG W W, QU Z P, SONG L X, et al. An investigation of Zr/Ce ratio influencing the catalytic performance of CuO/Ce1−xZrx O2 catalyst for CO2 hydrogenation to CH3OH[J]. J Energy Chem,2020,47:18−28. doi: 10.1016/j.jechem.2019.11.021
    [38]
    ZHU C Z, WEI X Q, LI W Q, et al. Crystal-plane effects of CeO2{110} and CeO2{100} on photocatalytic CO2 reduction: Synergistic interactions of oxygen defects and hydroxyl groups[J]. ACS Sustainable Chem Eng,2020,8(38):14397−14406.
    [39]
    DOSTAGIR N H M, RATTANAWAN R, GAO M, et al. Co single atoms in ZrO2 with Inherent oxygen vacancies for selective hydrogenation of CO2 to CO[J]. ACS Catal,2021,11(15):9450−9461. doi: 10.1021/acscatal.1c02041
    [40]
    GAO P, ZHANG L N, LI S G, et al. Novel heterogeneous catalysts for CO2 hydrogenation to liquid fuels[J]. ACS Cent Sci,2020,6(10):1657−1670. doi: 10.1021/acscentsci.0c00976
    [41]
    GAO P, LI S G, BU X N, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nat Chem,2017,9(10):1019−1024. doi: 10.1038/nchem.2794
    [42]
    GAO P, LI F, ZHAN H J, et al. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. J Catal,2013,298:51−60. doi: 10.1016/j.jcat.2012.10.030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (221) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return