Volume 52 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
GUO Jiong, YANG Jinhai, SHI Yilin, ZHAO Ning, XIAO Fukui, JIANG Xindong. Investigation on production of dimethyl carbonate from propylene carbonate and methanol on calcium cerium-based catalysts[J]. Journal of Fuel Chemistry and Technology, 2024, 52(4): 545-552. doi: 10.1016/S1872-5813(23)60394-9
Citation: GUO Jiong, YANG Jinhai, SHI Yilin, ZHAO Ning, XIAO Fukui, JIANG Xindong. Investigation on production of dimethyl carbonate from propylene carbonate and methanol on calcium cerium-based catalysts[J]. Journal of Fuel Chemistry and Technology, 2024, 52(4): 545-552. doi: 10.1016/S1872-5813(23)60394-9

Investigation on production of dimethyl carbonate from propylene carbonate and methanol on calcium cerium-based catalysts

doi: 10.1016/S1872-5813(23)60394-9
Funds:  The project was supported by Fundamental Research Program of Shanxi Province (202203021221303), National Natural Science Foundation of China (22078201), Joint Funds of the National Natural Science Foundation of China (U1908202), Science and Technology Major Project of Shanxi Province (202005D121002), The Central Project Guide Local Science and Technology for Development (2020SW26).
  • Received Date: 2023-09-06
  • Accepted Date: 2023-10-18
  • Rev Recd Date: 2023-10-13
  • Available Online: 2023-11-10
  • Publish Date: 2024-04-03
  • Calcium cerium-based catalysts with different Ca:Ce molar ratio prepared by sol-gel method were characterized by XRD, N2 adsorption-desorption, FT-IR, XPS and CO2-TPD, and evaluated the activity for dimethyl carbonate (DMC) synthesis from propylene carbonate (PC) and methanol. The results indicated that more surface oxygen vacancies and more moderate basic sites are beneficial for methanol activation and thus leading to better catalytic activity. The PC conversion was 91.1% with DMC selectivity of 91.72% over 0.9CaCe under the reaction conditions-reaction time of 2 h, reaction temperature of 40 °C, methanol to propylene carbonate molar ratio of 15:1 and catalyst amount of 4% relative to the amount of PC.
  • loading
  • [1]
    AHMAD RUSLAN N A A, KAN S Y, HAMZAH A S, et al. Natural food additives as green catalysts in organic synthesis: A review[J]. Environ Chem Lett,2021,19(4):3359−3380. doi: 10.1007/s10311-021-01209-8
    [2]
    SHARMA S, DAS J, BRAJE W M, et al. A glimpse into green chemistry practices in the pharmaceutical industry[J]. ChemSusChem,2020,13(11):2859−2875. doi: 10.1002/cssc.202000317
    [3]
    TUNDO P, MUSOLINO M, ARICO F. The reactions of dimethyl carbonate and its derivatives[J]. Green Chem,2018,20(1):28−85. doi: 10.1039/C7GC01764B
    [4]
    DABRAL S, ENGEL J, MOTTWEILER J, et al. Mechanistic studies of base-catalysed lignin depolymerisation in dimethyl carbonate[J]. Green Chem,2018,20(1):170−182. doi: 10.1039/C7GC03110F
    [5]
    GAO Y, LI Z, SU K, et al. Excellent performance of TiO2(B) nanotubes in selective transesterification of DMC with phenol derivatives[J]. Chem Eng J,2016,301:12−18. doi: 10.1016/j.cej.2016.04.036
    [6]
    DU Z, ZHOU B, XIONG J, et al. Advances in catalyst for synthesis of dimethyl carbonate by oxidative carbonylation of methanol[J]. Chem Eng,2012,40(8):29−32.
    [7]
    ZHAO Y, LIU S, WANG G, et al. Progress in synthesis of dimethyl carbonate from urea[J]. Chem Ind Eng Prog,2004,23(10):1049−1052.
    [8]
    YANHONG C, HUAJUN W. Progress in synthesis of dimethyl carbonate via transesterification[J]. Chem Ind Eng Prog,2007,26(5):642−646.
    [9]
    LI H S, ZHONG S H. Dimethyl carbonate synthesis from carbon dioxide and methanol[J]. Prog Chem,2002,14(5):368−373.
    [10]
    KOHLI K, SHARMA B K, PANCHAL C B. Dimethyl carbonate: Review of synthesis routes and catalysts used[J]. Energies,2022,15(14):5133.
    [11]
    HOLTBRUEGGE J, KUHLMANN H, LUTZE P. Process analysis and economic optimization of intensified process alternatives for simultaneous industrial scale production of dimethyl carbonate and propylene glycol[J]. Chem Eng Res Des,2015,93:411−431.
    [12]
    AN H, ZHANG G, ZHAO X, et al. Preparation of highly stable Ca-Zn-Al oxide catalyst and its catalytic performance for one-pot synthesis of dimethyl carbonate[J]. Catal Today,2018,316:185−192. doi: 10.1016/j.cattod.2018.03.006
    [13]
    LI F, LIAO Y H, ZHAO N, et al. The effect of NaF amount on solid base catalysts derived from F-Ca-Mg-Al layered double hydroxides and dimethyl carbonate synthesis[J]. J Fuel Chem Technol,2022,50(1):80−89. doi: 10.1016/S1872-5813(21)60165-2
    [14]
    AHIRE J, BHANAGE B M. Solar light assisted synthesis of CeO2 nanoparticles for transesterification of ethylene carbonate with methanol to dimethyl carbonate[J]. Catal Lett,2022,152(11):3284−3293. doi: 10.1007/s10562-022-03927-2
    [15]
    SHI Y B, ZHANG G L, SUN Y C, et al. KIT-6 supported CeO2 for catalytic synthesis of dimethyl carbonate from CO2 and methanol[J]. Chin J Inorg Chem,2021,37(6):1004−1016.
    [16]
    KUMAR N, SRIVASTAVA V C. Dimethyl carbonate synthesis via transesterification of propylene carbonate using an efficient reduced graphene oxide-supported ZnO nanocatalyst[J]. Energy Fuels,2020,34(6):7455−7464.
    [17]
    TIAN X, ZENG Y, XIAO T, et al. Fabrication and stabilization of nanocrystalline ordered mesoporous MgO-ZrO2 solid solution[J]. Microporous Mesoporous Mater,2011,143(2/3):357−361. doi: 10.1016/j.micromeso.2011.03.015
    [18]
    XU J, CHEN Y, MA D, et al. Simple preparation of MgO/g-C3N4 catalyst and its application for catalytic synthesis of dimethyl carbonate via transesterification[J]. Catal Commun,2017,95:72−76. doi: 10.1016/j.catcom.2017.03.009
    [19]
    WANG H, WANG M, ZHANG W, et al. Synthesis of dimethyl carbonate from propylene carbonate and methanol using CaO-ZrO2 solid solutions as highly stable catalysts[J]. Catal Today,2006,115(1/4):107−110. doi: 10.1016/j.cattod.2006.02.031
    [20]
    WEI T, WANG M H, WEI W, et al. Effect of base strength and basicity on catalytic behavior of solid bases for synthesis of dimethyl carbonate from propylene carbonate and methanol[J]. Fuel Process Technol,2003,83(1/3):175−182. doi: 10.1016/S0378-3820(03)00065-1
    [21]
    YOU Q, YIN X, WANG J, et al. A recyclable solid catalyst of KF/Ca-Mg-Al-O using for biodiesel production from jatropha seed oil: Preparation, characterization, and methanolysis process optimization[J]. Mater Res Exp,2022,9(6):065505.
    [22]
    CAKIRCA E E, AKIN A N. Study on heterogeneous catalysts from calcined Ca riched hydrotalcite like compounds for biodiesel production[J]. Sustainable Chem Pharm,2021,20:100378.
    [23]
    KUMAR P, SRIVASTAVA V C, MISHRA I M. Synthesis and characterization of Ce-La oxides for the formation of dimethyl carbonate by transesterification of propylene carbonate[J]. Catal Commun,2015,60:27−31. doi: 10.1016/j.catcom.2014.11.006
    [24]
    LUO J, WANG Y, WANG F, et al. Aerobic oxidation of fluorene to fluorenone over copper-doped Co3O4 with a high specific surface area[J]. ACS Sustainable Chem Eng,2020,8(6):2568−2576.
    [25]
    THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl Chem,2015,87(9/10):1051−1069. doi: 10.1515/pac-2014-1117
    [26]
    WU X, KANG M, ZHAO N, et al. Dimethyl carbonate synthesis over ZnO-CaO bi-functional catalysts[J]. Catal Commun,2014,46:46−50. doi: 10.1016/j.catcom.2013.10.040
    [27]
    JI X, YANG J, ZHAO N, et al. Synthesis of ethylene carbonate by alcoholysis of urea over Zn-Zr mixed oxides[J]. Inorg Chem Commun,2021,134:109061.
    [28]
    LI F, WANG Y F, YANG Q Z, et al. Study on adsorption of glyphosate (N-phosphonomethyl glycine) pesticide on MgAl-layered double hydroxides in aqueous solution[J]. J Hazardous Mater,2005,125(1/3):89−95. doi: 10.1016/j.jhazmat.2005.04.037
    [29]
    LIAO Y, LI F, PU Y, et al. Solid base catalysts derived from Ca-Al-X (X=F, Cl and Br) layered double hydroxides for methanolysis of propylene carbonate[J]. Rsc Adv,2018,8(2):785−791. doi: 10.1039/C7RA10832J
    [30]
    PAL D B, LAVANIA R, SRIVASTAVA P, et al. Photo-catalytic degradation of methyl tertiary butyl ether from wastewater using CuO/CeO2 composite nanofiber catalyst[J]. J Environ Chem Eng,2018,6(2):2577−2587. doi: 10.1016/j.jece.2018.04.001
    [31]
    AL-DARWISH J, SENTER M, LAWSON S, et al. Ceria nanostructured catalysts for conversion of methanol and carbon dioxide to carbonate[J]. Catal Today,2020,350:120−126. doi: 10.1016/j.cattod.2019.06.013
    [32]
    HUO L, WANG T, PU Y, et al. Effect of cobalt doping on the stability of CaO-based catalysts for dimethyl carbonate Synthesis via the transesterification of propylene carbonate with methanol[J]. Chemistryselect,2021,6(38):10226−10237. doi: 10.1002/slct.202102987
    [33]
    刘春宇, 宋忠贤, 张学军, 等. 过渡金属改性Ce-M-Ox(M=Cu, Co, Mn和Fe)催化剂在NH3-SCR反应研究[J]. 化学试剂,2023,45(3):53−60.

    LIU Chunyu, SONG Zhongxian, ZHANG Xuejun, et al. Study on transition-metal-modified Ce-M-Ox(M=Cu, Co, Mn, and Fe) catalysts in the NH3-SCR reaction[J]. Chem Reag,2023,45(3):53−60.
    [34]
    WANG J, YANG L, LUO W, et al. Sustainable biodiesel production via transesterification by using recyclable Ca2MgSi2O7 catalyst[J]. Fuel,2017,196:306−313. doi: 10.1016/j.fuel.2017.02.007
    [35]
    MARCINIUK L L, HAMMER P, PASTORE H O, et al. Sodium titanate as basic catalyst in transesterification reactions[J]. Fuel,2014,118:48−54. doi: 10.1016/j.fuel.2013.10.036
    [36]
    LIU B, LI C, ZHANG G, et al. Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods[J]. ACS Catal,2018,8(11):10446−10456. doi: 10.1021/acscatal.8b00415
    [37]
    王兰心, 于雪莲, 安晓强. 基于氧空位构筑路易斯酸碱位点及其在环境光催化中的应用[J]. 南京信息工程大学学报(自然科学版),2023,15(3):253−266.

    Wang Lanxin, YU Xuelian, AN Xiaoqiang. Constructing lewis acid-base sites based on oxygen vacancies and their application in environmental photocatalysis[J]. J Nanjing Univ Inform Sci Technol (Nat Sci Ed),2023,15(3):253−266.
    [38]
    CUTRUFELLO M G, ATZORI L, MELONI D, et al. Synthesis of dimethyl carbonate by transesterification of propylene carbonate with methanol on CeO2-La2O3 oxides prepared by the soft template method[J]. Materials,2021,14(17):4802.
    [39]
    FU Z, ZHONG Y, YU Y, et al. TiO2-doped CeO2 nanorod catalyst for direct conversion of CO2 and CH3OH to dimethyl carbonate: Catalytic performance and kinetic study[J]. ACS Omega,2018,3(1):198−207. doi: 10.1021/acsomega.7b01475
    [40]
    KUMAR P, KAUR R, VERMA S, et al. The preparation and efficacy of SrO/CeO2 catalysts for the production of dimethyl carbonate by transesterification of ethylene carbonate[J]. Fuel,2018,220:706−716. doi: 10.1016/j.fuel.2018.01.137
    [41]
    SMOLAKOVA L, FROLICH K, TROPPOVA I, et al. Determination of basic sites in Mg-Al mixed oxides by combination of TPD-CO2 and CO2 adsorption calorimetry[J]. J Therm Anal Calorim,2017,127(3):1921−1929. doi: 10.1007/s10973-016-5851-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (118) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return