Volume 52 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
REN Pengyu, LIU Zhuo, QUAN Yanhong, GUO Junjun, MA Hong, WU Jianbing, WANG Yongzhao. Theoretical calculation study on the reaction mechanism of methanol/dimethyl ether carbonylation catalyzed by the B/Al/Ga-MOR zeolites[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 323-334. doi: 10.1016/S1872-5813(23)60395-0
Citation: REN Pengyu, LIU Zhuo, QUAN Yanhong, GUO Junjun, MA Hong, WU Jianbing, WANG Yongzhao. Theoretical calculation study on the reaction mechanism of methanol/dimethyl ether carbonylation catalyzed by the B/Al/Ga-MOR zeolites[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 323-334. doi: 10.1016/S1872-5813(23)60395-0

Theoretical calculation study on the reaction mechanism of methanol/dimethyl ether carbonylation catalyzed by the B/Al/Ga-MOR zeolites

doi: 10.1016/S1872-5813(23)60395-0
Funds:  The National Natural Science Foundation of China (22072079, 22302115), the Fundamental Research Program of Shanxi Province (202303021221056), the Open Fund for Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology (MKX202103).
  • Received Date: 2023-10-08
  • Accepted Date: 2023-10-24
  • Rev Recd Date: 2023-10-24
  • Available Online: 2023-11-10
  • Publish Date: 2024-03-10
  • The reaction mechanism of methanol/dimethyl ether (DME) carbonylation catalyzed by isomorphously substituted B-, Al-, and Ga-MOR zeolites (B/Al/Ga-MOR) was comparatively investigated by the density functional theory (DFT) calculations. The commonalities and differences between methanol and dimethyl ether as the reactant as well as among various MOR zeolites in the catalytic reaction pathways were disclosed, where one Si atom was substituted by B, Al or Ga at the 8-ring side pockets T3 sites or the 12-ring channels T4 sites of MOR. The results indicate that the insertion of CO into methoxy group to form acetyl groups follows the SN2 mechanism and is the rate-determining step in the carbonylation reactions. Under 473 K, either methanol or dimethyl ether is used as feedstock, the formed acetyl group prefers to interact with CH3O in methanol to form methyl acetate. The T3 sites show better carbonylation selectivity, whereas T4 sites display better trimethoxonium ions selectivity which favors the generation of aromatics and leads to the catalyst deactivation. Comparing with Al-MOR, the introduction of Ga and B at the T3 sites increases the free energy barriers of carbonylation, whereas the introduction of Ga and B in particular at the T4 sites can substantially increase the energy barriers of generating trimethyloxonium ions, which can effectively suppress the side reaction and improve the catalyst stability. This work contributes to the understanding of the catalytic roles of various acidic sites in different channels of the MOR zeolites and provides certain theoretical support for tailoring and designing efficient MOR zeolite catalysts for methanol/dimethyl ether carbonylation.
  • loading
  • [1]
    LI Y, HE D W, NIU D J, et al. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation[J]. Bioprocess Biosyst Eng,2015,38(5):863−869. doi: 10.1007/s00449-014-1329-8
    [2]
    SANTIAGO M A N, SÁNCHEZ-CASTILLO M A, CORTRIGHT R D, et al. Catalytic reduction of acetic acid, methyl acetate, and ethyl acetate over silica-supported copper[J]. J Catal,2000,193(1):16−28. doi: 10.1006/jcat.2000.2883
    [3]
    KALCK P, LE BERRE C, SERP P. Recent advances in the methanol carbonylation reaction into acetic acid[J]. Coord Chem Rev,2020,402(1):213078.
    [4]
    CHENG Z Z, HUANG S Y, LI Y, et al. Deactivation kinetics for the carbonylation of dimethyl ether to methyl acetate on H-MOR[J]. Ind Eng Chem Res,2017,56(46):13618−13627. doi: 10.1021/acs.iecr.7b03500
    [5]
    FAN B H, ZHANG W N, GAO P, et al. Quantitatively mapping the distribution of intrinsic acid sites in mordenite zeolite by high-field 23Na solid-state nuclear magnetic resonance[J]. J Phys Chem Lett,2022,13(23):5186−5194. doi: 10.1021/acs.jpclett.2c00932
    [6]
    LIU S P, FANG X D, LIU Y, et al. Dimethyl ether Carbonylation over mordenite zeolite modified by Alkyimidazolium ions[J]. Catal Commun,2020,147:106161. doi: 10.1016/j.catcom.2020.106161
    [7]
    HAM H, JUNG H S, KIM H S, et al. Gas-phase carbonylation of dimethyl ether on the stable seed-derived ferrierite[J]. ACS Catal,2020,10(9):5135−5146. doi: 10.1021/acscatal.9b05144
    [8]
    FENG X B, YAO J, LI H J, et al. A brand new zeolite catalyst for carbonylation reaction[J]. Chem Commun,2019,55(8):1048−1051. doi: 10.1039/C8CC08411D
    [9]
    FUJIMOTO K, SHIKADA T, OMATA K, et al. Vapor phase carbonylation of methanol with solid acid catalysts[J]. Chem Lett,1984,13(12):2047−2050. doi: 10.1246/cl.1984.2047
    [10]
    CHEUNG P, BHAN A, SUNLEY G J, et al. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J]. Angew Chem,2006,118(10):1647−1650. doi: 10.1002/ange.200503898
    [11]
    CHEUNG P, BHAN A, SUNLEY G J, et al. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites[J]. J Catal,2007,245(1):110−123. doi: 10.1016/j.jcat.2006.09.020
    [12]
    NARSIMHAN K, MICHAELIS V K, MATHIES G, et al. Methane to acetic acid over Cu-exchanged zeolites: Mechanistic insights from a site-specific carbonylation reaction[J]. J Am Chem Soc,2015,137(5):1825−1832. doi: 10.1021/ja5106927
    [13]
    BLASCO T, BORONAT M, CONCEPCIÓN P, et al. Carbonylation of methanol on metal-acid zeolites: Evidence for a mechanism involving a multisite active center[J]. Angew Chem,2007,119(21):4012−4015. doi: 10.1002/ange.200700029
    [14]
    BORONAT M, MARTINEZ-SANCHEZ C, LAW D, et al. Enzyme-like specificity in zeolites: A unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO[J]. J Am Chem Soc,2008,130(48):16316−16323. doi: 10.1021/ja805607m
    [15]
    LI B J, XU J, HAN B, et al. Insight into dimethyl ether carbonylation reaction over mordenite zeolite from in-situ solid-state NMR spectroscopy[J]. J Phys Chem C,2013,117(11):5840−5847. doi: 10.1021/jp400331m
    [16]
    CHU Y Y, LO A Y, WANG C, et al. Origin of high selectivity of dimethyl ether carbonylation in the 8-membered ring channel of mordenite zeolite[J]. J Phys Chem C,2019,123(25):15503−15512. doi: 10.1021/acs.jpcc.9b01874
    [17]
    WANG S R, GUO W W, ZHU L J, et al. Methyl acetate synthesis from dimethyl ether carbonylation over mordenite modified by cation exchange[J]. J Phys Chem C,2014,119(1):524−533.
    [18]
    REULE ALLEN A C, SEMAGINA N. Zinc hinders deactivation of copper-mordenite: Dimethyl ether carbonylation[J]. ACS Catal,2016,6(8):4972−4975. doi: 10.1021/acscatal.6b01464
    [19]
    ALBERTI A. Location of Brønsted sites in mordenite[J]. Zeolites,1997,19(5/6):411−415. doi: 10.1016/S0144-2449(97)00114-0
    [20]
    LI Y, SUN Q, HUANG S Y, et al. Dimethyl ether carbonylation over pyridine-modified MOR: Enhanced stability influenced by acidity[J]. Cataly Today,2018,311(1):81−88.
    [21]
    NI Y M, SHI L, LIU H C, et al. A green route for methanol carbonylation[J]. Catal Sci Technol,2017,7(20):4818−4822. doi: 10.1039/C7CY01621B
    [22]
    HE T, LIU X C, XU S T, et al. Role of 12-ring channels of mordenite in DME carbonylation investigated by solid-state NMR[J]. J Phys Chem C,2016,120(39):22526−22531. doi: 10.1021/acs.jpcc.6b07958
    [23]
    LU P, YANG G H, TANAKA Y, et al. Ethanol direct synthesis from dimethyl ether and syngas on the combination of noble metal impregnated zeolite with Cu/ZnO catalyst[J]. Cataly Today,2014,232(1):22−26.
    [24]
    MA M, ZHAN E S, HUANG X M, et al. Carbonylation of dimethyl ether over Co-HMOR[J]. Catal Sci Technol,2018,8(8):2124−2130. doi: 10.1039/C8CY00407B
    [25]
    LI Y, HUANG S Y, CHENG Z Z, et al. Promoting the activity of Ce-incorporated MOR in dimethyl ether carbonylation through tailoring the distribution of Brønsted acids[J]. Appl Catal B: Environ,2019,256(5):117777.
    [26]
    KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J]. Phys Rev B: Condens Matter Mater Phys,1994,49(20):14251−14269. doi: 10.1103/PhysRevB.49.14251
    [27]
    GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J Comput Chem,2006,27(15):1787−1799. doi: 10.1002/jcc.20495
    [28]
    WANG V, XU N, LIU J C, et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Comput Phys Commun,2021,267:108033. doi: 10.1016/j.cpc.2021.108033
    [29]
    EYRING H. The Activated complex in chemical reactions[J]. J Chem Phys,1935,3:107−115. doi: 10.1063/1.1749604
    [30]
    YUAN S P, WANG J G, LI Y M, et al. Theoretical studies on the properties of acid site in isomorphously substituted ZSM-5[J]. Mol Catal A: Chem,2002,178(1/2):267. doi: 10.1016/S1381-1169(01)00335-1
    [31]
    JONES A J, IGLESIA E. The strength of Brønsted acid sites in microporous Aluminosilicates[J]. ACS Catal,2015,5:5741−5755. doi: 10.1021/acscatal.5b01133
    [32]
    WANG S, LI S Y, ZHANG L, et al. Mechanistic insights into the catalytic role of various acid sites on ZSM-5 zeolite in the carbonylation of methanol and dimethyl ether[J]. Catal Sci Technol,2018,8(12):3193−3204. doi: 10.1039/C8CY00296G
    [33]
    BORONAT M, MARTINEZ C, CORMA A. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite[J]. Phys Chem Chem Phys,2011,13(7):2603−2612. doi: 10.1039/c0cp01996h
    [34]
    RASMUSSEN D B, CHRISTENSEN J M, TEMEL B, et al. Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite[J]. Angew Chem Int Ed,2015,54(25):7261−7264. doi: 10.1002/anie.201410974
    [35]
    RASMUSSEN D B, CHRISTENSEN J M, TEMEL B, et al. Reaction mechanism of dimethyl ether carbonylation to methyl acetate over mordenite-a combined DFT/experimental study[J]. Catal Sci Technol,2017,7(5):1141−1152. doi: 10.1039/C6CY01904H
    [36]
    LIU Z Q, YI X F, WANG G R, et al. Roles of 8-ring and 12-ring channels in mordenite for carbonylation reaction: From the perspective of molecular adsorption and diffusion[J]. J Catal,2019,369:335−344. doi: 10.1016/j.jcat.2018.11.024
    [37]
    KING S T. Reaction mechanism of oxidative carbonylation of methanol to dimethyl carbonate in Cu-Y zeolite[J]. J Catal,1996,161(2):530−538. doi: 10.1006/jcat.1996.0215
    [38]
    CALDERAZZO F, COTTON F A. Carbon monoxide insertion reactions. I. the carbonylation of methyl manganese pentacarbonyl and decarbonylation of acetyl manganese pentacarbonyl[J]. Inorg Chem,1962,1(1):30−36. doi: 10.1021/ic50001a008
    [39]
    MA H, LIAO J, WEI Z H, et al. Trimethyloxonium ion - a zeolite confined mobile and efficient methyl carrier at low temperatures-a DFT study coupled with microkinetic analysis[J]. Catal Sci Technol,2022,12:3328. doi: 10.1039/D2CY00207H
    [40]
    ZHOU Z Q, LIU H C, NI Y M, et al. Direct conversion of dimethyl ether and CO to acetone via coupling carbonylation and ketonization[J]. J Catal,2021,396:360−373. doi: 10.1016/j.jcat.2021.03.006
    [41]
    BHAN A, ALLIAN A D, SUNLEY G J, et al. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls[J]. J Am Chem Soc,2007,129(16):4919−4924. doi: 10.1021/ja070094d
    [42]
    YUAN S P, WANG J G, LI Y W, et al. Density functional investigations into the siting of Fe and the acidic properties of isomorphously substituted mordenite by B, Al, Ga and Fe[J]. J Mol Struct: Theochem,2004,674(1/3):267−274. doi: 10.1016/S0166-1280(03)00463-9
    [43]
    CAI K, HUANG S Y, LI Y, et al. Influence of acid strength on the reactivity of dimethyl ether carbonylation over H-MOR[J]. ACS Sustainable Chem Eng,2018,7(2):2027−2034.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (142) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return