Turn off MathJax
Article Contents
SIMA Hao, WANG Xuefeng, DENG Cunbao. Study on copper-based oxygen carrier catalytic power plant flue gas deoxidation[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60409-8
Citation: SIMA Hao, WANG Xuefeng, DENG Cunbao. Study on copper-based oxygen carrier catalytic power plant flue gas deoxidation[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60409-8

Study on copper-based oxygen carrier catalytic power plant flue gas deoxidation

doi: 10.1016/S1872-5813(23)60409-8
Funds:  The project was supported by National Natural Science Foundation Joint fund project of China ( U1810206 ).
  • Received Date: 2023-12-06
  • Accepted Date: 2024-01-17
  • Rev Recd Date: 2024-01-16
  • Available Online: 2024-02-28
  • The main components of power plant flue gas are N2, CO2 and part O2. Injecting power plant flue gas into mine goaf can achieve CO2 storage and replace nitrogen injection to prevent spontaneous combustion of left coal. However, O2 in flue gas is one of the factors causing spontaneous combustion of left coal. Therefore, it is urgent to develop an economical and effective catalyst to remove O2 from power plant flue gas. In this study, four types of copper-based catalysts were prepared using a controllable modulating carrier and loading capacity through co-precipitation method. Additionally, a series of xCuO/CeO2 catalystswere synthesized. The catalysts were characterized using BET analysis, XRD analysis, ICP analysis, TEM analysis, H2-TPR and XPS analysis to establish a structure-activity relationship between catalyst structure and deoxidation performance for catalytic power plant flue gases. The results showed that the addition of CeO2 improved the dispersion of CuO, increased the oxygen vacancy of the catalyst, and improved the activity and reduction oxidation performance of the catalyst. Moreover, the synergistic effect of Cu-Ce interface structure promoted the reduction oxidation process, showing good activity and cycle stability. Among xCuO/CeO2 catalysts, 30CuO/CeO2 showed the best catalytic deoxidation performance due to its smallest CuO particle size, highest dispersion and highest oxygen vacancy concentration. The results of this study provide a reference for the development of low cost, recyclable, high activity and high stability deoxidation catalysts.
  • loading
  • [1]
    荆蕊, 王雪峰, 乔玲, 等. 电厂烟气注入采空区防灭火技术的研究进展[J]. 煤炭工程,2021,53(11):125−130.

    JING Rui, WANG Xuefeng , QIAO Ling, et al. Research status and future prospect of power plant flue gas sealed in goaf[J]. Coal Eng,2021,53(11):125−130.
    [2]
    黄戈, 王继仁, 邓存宝, 等. 电厂烟道气预防遗煤自燃的合理含氧量模拟研究[J]. 中国安全科学学报,2017,27(3):42−47.

    HUANG Ge, WANG Jiren, DENG Cunbao, et al. Numerical simulation of reasonable oxygen content in flue gas for preventing residual coal spontaneous combustion[J]. China Saf Sci J,2017,27(3):42−47.
    [3]
    COLUSSI S, TROVARELLI A, GROPPI G, et al. The effect of CeO2 on the dynamics of Pd-PdO transformation over Pd/Al2O3 combustion catalysts[J]. Catal Commun,2007,8(8):1263−1266. doi: 10.1016/j.catcom.2006.11.020
    [4]
    张艳, 张永发, 张国杰. 含氧煤层气脱氧过程中硫化物的脱氧特性[J]. 煤炭转化,2009,32(1):68−71. doi: 10.3969/j.issn.1004-4248.2009.01.015

    ZHANG Yan, ZHANG Yongfa, ZHANG Guojie. Deoxygenation characteristic of sulfide oxidation in the process of oxygen-bearing coal mine methane[J]. Coal Convers,2009,32(1):68−71. doi: 10.3969/j.issn.1004-4248.2009.01.015
    [5]
    RYDEN M, LYNGFELT A, MATTISSON T. Chemical-looping combustion and chemical-looping reforming in a circulating fluidized-bed reactor using Ni-based oxygen carriers[J]. Energy Fuels,2008,22(4):2585−2597. doi: 10.1021/ef800065m
    [6]
    KWAK B, PARK N, RYU H, et al. Reduction and oxidation performance evaluation of manganese-based iron, cobalt, nickel, and copper bimetallic oxide oxygen carriers for chemical-looping combustion[J]. Appl Therm Eng,2018,128:1273−1281. doi: 10.1016/j.applthermaleng.2017.09.111
    [7]
    MATTISSON T, JERNDAL E, LINDERHOLM C, et al. Reactivity of a spray-dried NiO/NiAl2O4 oxygen carrier for chemical-looping combustion[J]. Chem Eng Sci,2011,66(20):4636−4644. doi: 10.1016/j.ces.2011.06.025
    [8]
    KOLBITSCH P, JOHANNES B, PROLL T, et al. Comparison of two ni-based oxygen carriers for chemical looping combustion of natural gas in 140 kW continuous looping operation[J]. Ind Eng Chem Res,2009,48(11):5542−5547. doi: 10.1021/ie900123v
    [9]
    TIJANI M, AQSHA A, MAHINPEY N. Synthesis and study of metal-based oxygen carriers (Cu, Co, Fe, Ni) and their interaction with supported metal oxides (Al2O3, CeO2, TiO2, ZrO2) in a chemical looping combustion system[J]. Energy,2017,138:873−882. doi: 10.1016/j.energy.2017.07.100
    [10]
    杨浩, 郑华艳, 常瑜, 等. 以共沉淀法为基础的铜基催化剂制备新技术的研究进展[J]. 化工进展,2014,(2):379−386. doi: 10.3969/j.issn.1000-6613.2014.02.020

    YANG Hao, ZHENG Huayan, CHANG Yu, et al. Research progress of preparation of copper-based catalyst by coprecipitation[J]. Chem Ind Eng Prog,2014,(2):379−386. doi: 10.3969/j.issn.1000-6613.2014.02.020
    [11]
    LUO M, SONG Y, LU J, et al. Identification of CuO species in high surface area CuO−CeO2 Catalysts and their catalytic activities for CO oxidation[J]. J Phys Chem C,2007,111(34):12686−12692. doi: 10.1021/jp0733217
    [12]
    陈国星, 李巧灵, 魏育才, 等. 镍促进CuO-CeO2催化剂的结构表征及低温CO氧化活性[J]. 催化学报,2013,34(2):322−329. doi: 10.1016/S1872-2067(11)60468-3

    CHEN Guoxing, LI Qiaoling, WEI Yucai, et al. Low temperature Co oxidation on Ni-promoted CuO-CeO2 catalysts[J]. Chin J Catal,2013,34(2):322−329. doi: 10.1016/S1872-2067(11)60468-3
    [13]
    杨志强, 毛东森, 郭强胜, 等. 制备方法对CuO/CeO2-ZrO2催化CO低温氧化活性的影响[J]. 物理化学学报,2010,26(12):3278−3284. doi: 10.3866/PKU.WHXB20101210

    YANG Zhiqiang, MAO Dongsen, GUO Qiangsheng, et al. Effect of preparation method on the activity of CuO/CeO2-ZrO2 catalysts for low temperature CO oxidation[J]. Acta Phys -Chim Sin,2010,26(12):3278−3284. doi: 10.3866/PKU.WHXB20101210
    [14]
    ZOU Z, MENG M, ZHA Y. Surfactant-assisted synthesis, characterizations, and catalytic oxidation mechanisms of the mesoporous MnOx-CeO2and Pd/MnOx-CeO2catalysts used for CO and C3H8 oxidation[J]. J Phys Chem C,2010,114(1):468−477. doi: 10.1021/jp908721a
    [15]
    QI L, YU Q, DAI Y, et al. Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation[J]. Appl Catal B: Environ,2012,119:308−320.
    [16]
    ZENG S, LIU K, ZHANG L, et al. Deactivation analyses of CeO2/CuO catalysts in the preferential oxidation of carbon monoxide[J]. J Power Sources,2014,261:46−54. doi: 10.1016/j.jpowsour.2014.03.043
    [17]
    ZHAO Q , LIU Q, ZHENG Y, et al. Enhanced catalytic performance for volatile organic compound oxidation over in-situ growth of MnOx on Co3O4 nanowire[J]. Chemosphere, 2020, 244 (C): 125−532.
    [18]
    WANG X, WANG S, WANG S, et al. The preparation of Au/CeO2 catalysts and their activities for low-temperature CO oxidation[J]. Catal Letters,2006,112(1/2):115−119. doi: 10.1007/s10562-006-0173-0
    [19]
    GUO Z, SEOL M, KIM M, et al. Hollow CuO nanospheres uniformly anchored on porous Si nanowires: preparation and their potential use as electrochemical sensors[J]. Nanoscale,2012,4(23):7525. doi: 10.1039/c2nr32556j
    [20]
    REDDY B, BHARALI P, SAIKIA P, et al. Structural Characterization and catalytic activity of nanosized Ce x M1− x O2(M = Zr and Hf) mixed oxides[J]. J Phys Chem C,2008,112(31):11729−11737. doi: 10.1021/jp802674m
    [21]
    QIN J, LU J, CAO M, et al. Synthesis of porous CuO-CeO2 nanospheres with an enhanced low-temperature CO oxidation activity[J]. Nanoscale,2010,2(12):2739. doi: 10.1039/c0nr00446d
    [22]
    GHOLAMI Z, LUO G. Low-Temperature selective catalytic reduction of NO by CO in the presence of O2 over Cu: Ce catalysts supported by multiwalled carbon nanotubes[J]. Ind Eng Chem Res,2018,57(27):8871−8883. doi: 10.1021/acs.iecr.8b01343
    [23]
    JOHNSTON-PECK A, SENANAYAKE S. , PLATA J, et al. Nature of the mixed-oxide interface in ceria-titania catalysts: Clusters, chains, and nanoparticles[J]. J Phys Chem C,2013,117(28):14463−14471. doi: 10.1021/jp3125268
    [24]
    MUNOZ-BATISTA M, GOMEZ-CEREZO M, KUBACKA A, et al. Role of interface contact in CeO2-TiO2 photocatalytic composite materials[J]. ACS Catal,2014,4(1):63−72. doi: 10.1021/cs400878b
    [25]
    TROGADAS P, PARRONDO J, RAMANI V. CeO2 surface oxygen vacancy concentration governs in situ free radical scavenging efficacy in polymer electrolytes[J]. ACS Appl Mater Interfaces,2012,4(10):5098−5102. doi: 10.1021/am3016069
    [26]
    KUMAR A, BABU S, KARAKOTI A, et al. Luminescence properties of europium-doped cerium oxide nanoparticles: Role of vacancy and oxidation states[J]. Langmuir,2009,25(18):10998−11007. doi: 10.1021/la901298q
    [27]
    BERA P, PRIOLKAR K, SARODE P. Structural investigation of combustion synthesized CuCeO2 catalysts by exafs and other physical techniques: Formation of a Ce1− x Cu x O2− δ solid solution[J]. Chem Mater,2002,14(8):3591−3601. doi: 10.1021/cm0201706
    [28]
    WAN H, LI D, DAI Y, et al. Catalytic behaviors of CuO supported on Mn2O3 modified γ-Al2O3 for NO reduction by CO[J]. J Mol Catal A Chem,2010,332(1/2):32−44. doi: 10.1016/j.molcata.2010.08.016
    [29]
    DI MONTE R, KASPAR J, FORNASIERO P, et al. NO reduction by CO over Pd/Ce0.6Zr0.4O2 Al2O3 catalysts: In situ FT-IR studies of NO and CO adsorption[J]. Inorganica Chim Acta,2002,334:318−326. doi: 10.1016/S0020-1693(02)00800-9
    [30]
    QI G, YANG R. Characterization and FT-IR studies of MnOx−CeO2 catalyst for low-temperature selective catalytic reduction[J]. J Phys Chem B,2004,40(18):15738−15747.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (41) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return