Turn off MathJax
Article Contents
NIU Mengmeng, JIANG Yanan, ZHANG Xian, ZHANG Cuijuan, LIU Yuan. Promoted stability of Cu/ZnO/Al2O3 catalysts for methanol production from CO2 hydrogenation by La modification[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60438-X
Citation: NIU Mengmeng, JIANG Yanan, ZHANG Xian, ZHANG Cuijuan, LIU Yuan. Promoted stability of Cu/ZnO/Al2O3 catalysts for methanol production from CO2 hydrogenation by La modification[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60438-X

Promoted stability of Cu/ZnO/Al2O3 catalysts for methanol production from CO2 hydrogenation by La modification

doi: 10.1016/S1872-5813(24)60438-X
Funds:  The project was supported by National Natural Science Foundation of China (21872101, 21962014), the Key Research and Development Program of Ordos (YF20232313), Ordos Industrial Innovation Talent Team and the regional cooperation program of Shanxi (202204041101029).
  • Received Date: 2024-01-25
  • Accepted Date: 2024-03-04
  • Rev Recd Date: 2024-02-29
  • Available Online: 2024-03-14
  • Deactivation of Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation to methanol reaction is one of the main reasons limiting their application. We synthesized a series of La modified Cu/ZnO/Al2O3 catalysts by adding different contents of La to improve the stability. In the 100 h short-term stability test at 200 ℃ under 3 MPa with a GHSV of 12000 mL/(g·h), the unmodified Cu/ZnO/Al2O3 catalysts degraded obviously over 100 h. In sharp contrast, the stability was significantly promoted by the addition of La. The best activity was achieved with 5% La added samples (4% CO2 conversion and 85% methanol selectivity). Which also showed impressive stability over 1000 h except about17% deactivation during the initial 190−220 h. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results revealed that the addition of 5% La improved the dispersion of Cu and Zn , inhibited the sintering of Cu, stabilized the Cu0/+ species and retarded oxidation of Cu in catalysts, which attributed to the high stability of the catalysts.
  • loading
  • [1]
    NEETZOW P. The effects of power system flexibility on the efficient transition to renewable generation[J]. Appl Energy,2021,283:116278 doi: 10.1016/j.apenergy.2020.116278
    [2]
    ANDERSSON J and GRONKVIST S. Large-scale storage of hydrogen[J]. Int J Hydrogen Energy,2019,44:11901−11919 doi: 10.1016/j.ijhydene.2019.03.063
    [3]
    ALVAREZ A, BANSODE A, URAKAWA A, et al. Challenges in the greener production of formates formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes[J]. Chem Rev,2017,117:9804−9838 doi: 10.1021/acs.chemrev.6b00816
    [4]
    BOWKER M. Methanol synthesis from CO2 hydrogenation[J]. ChemCatChem,2019,11:4238−4246 doi: 10.1002/cctc.201900401
    [5]
    ONISHI N, HIMEDA Y. Homogeneous catalysts for CO2 hydrogenation to methanol and methanol dehydrogenation to hydrogen generation[J]. Coordin Chem Rev,2022,472:214767 doi: 10.1016/j.ccr.2022.214767
    [6]
    RUI N, WANG Z, SUN K, et al. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy[J]. Appl Catal B:Environ,2017,218:488−497 doi: 10.1016/j.apcatb.2017.06.069
    [7]
    TIAN G, WU Y, WU S, et al. Solid-state synthesis of Pd/In2O3 catalysts for CO2 hydrogenation to methanol[J]. Catal Lett,2023,153:903−910 doi: 10.1007/s10562-022-04030-2
    [8]
    CUI G, ZHANG Q, ZHOU L, et al. Hybrid MOF template-directed construction of hollow-structured In2O3@ZrO2 heterostructure for enhancing hydrogenation of CO2 to methanol[J]. Small,2023,19:2204914 doi: 10.1002/smll.202204914
    [9]
    YANG C, PEI C, LUO R, et al. Strong electronic oxide-support interaction over In2O3/ZrO2 for highly selective CO2 hydrogenation to methanol[J]. J Am Chem Soc,2020,142:19523−19531 doi: 10.1021/jacs.0c07195
    [10]
    HAN Z, TANG C, SHA F, et al. CO2 hydrogenation to methanol on ZnO-ZrO2 solid solution catalysts with ordered mesoporous structure[J]. J Catal,2021,396:242−250 doi: 10.1016/j.jcat.2021.02.024
    [11]
    WANG J, LI G, LI Z, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Sci Adv,2017,3:e1701290 doi: 10.1126/sciadv.1701290
    [12]
    NIU J, LIU H, JIN Y, et al. Comprehensive review of Cu-based CO2 hydrogenation to CH3OH: Insights from experimental work and theoretical analysis[J]. Int J Hydrogen Energy,2022,47:9183−9200 doi: 10.1016/j.ijhydene.2022.01.021
    [13]
    TWIGG V and SPENCER S. Deactivation of supported copper metal catalysts for hydrogenation reactions[J]. Appl Catal A:Genl,2001,212:161−174 doi: 10.1016/S0926-860X(00)00854-1
    [14]
    DANG S, YANG H, GAO P, et al. A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation[J]. Catal Today,2019,330:61−75 doi: 10.1016/j.cattod.2018.04.021
    [15]
    NATESAKHAWAT S, OHODNICKI R, HOWARD B H, et al. Adsorption and deactivation characteristics of Cu/ZnO-based catalysts for methanol synthesis from carbon dioxide[J]. Top Catal,2013,56:1752−1763 doi: 10.1007/s11244-013-0111-5
    [16]
    GONG J, YUE H, ZHAO Y, et al. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. J Am Chem Soc,2012,134:13922−13925 doi: 10.1021/ja3034153
    [17]
    LIANG B, MA J, SU X, et al. Investigation on deactivation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol[J]. Ind Eng Chem Res,2019,58:9030−9037 doi: 10.1021/acs.iecr.9b01546
    [18]
    LI H, WANG L and XIAO S. Silica-modulated Cu-ZnO-Al2O3 catalyst for efficient hydrogenation of CO2 to methanol[J]. Catal Today,2023,418:114051 doi: 10.1016/j.cattod.2023.114051
    [19]
    AN B, ZHANG J, CHENG K, et al. Confinement of ultrasmall Cu/ZnO x nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2[J]. J Am Chem Soc,2017,139:3834−3840 doi: 10.1021/jacs.7b00058
    [20]
    WANG P, ZHANG H, WANG S, et al. Controlling H2 adsorption of Cu/ZnO/Al2O3/MgO with enhancing the performance of CO2 hydrogenation to methanol at low temperature[J]. J Alloy Compd,2023,966:171577 doi: 10.1016/j.jallcom.2023.171577
    [21]
    GUO X, MAO D, LU G, et al. The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation[J]. J Mol Catal A:Chem,2011,345:60−68 doi: 10.1016/j.molcata.2011.05.019
    [22]
    JI Y, LIN S, XU G, et al. Enhancing CO2 hydrogenation to methanol via constructing Cu–ZnO–La2O3 interfaces[J]. Catal Lett,2023,23:10562
    [23]
    CHEN K, DUAN X, FANG H, et al. Selective hydrogenation of CO2 to methanol catalyzed by Cu supported on rod-like La2O2CO3[J]. Catal Sci & Technol,2018,84:1062−1069
    [24]
    ALI S, KUMAR D, KHADER M, et al. Synthesis and evaluation of lanthana modified Cu-based catalysts for CO2 hydrogenation to value added products[J]. Mol Catal,2023,543:113164
    [25]
    KOURTELESIS M, KOUSI K and KONDARIDES I. CO2 hydrogenation to methanol over La2O3 promoted CuO/ZnO/Al2O3 catalysts: A kinetic and mechanistic study[J]. Catalysts,2020,10:183 doi: 10.3390/catal10020183
    [26]
    ZHONG J, YANG X, WU Z, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chem Soc Rev,2020,49:1385−1413 doi: 10.1039/C9CS00614A
    [27]
    CHEN K, YU J, LIU B, et al. Simple strategy synthesizing stable CuZnO/SiO2 methanol synthesis catalyst[J]. J Catal,2019,372:163−173 doi: 10.1016/j.jcat.2019.02.035
    [28]
    HU W, DONAT F, SCOTT A, et al. The interaction between CuO and Al2O3 and the reactivity of copper aluminates below 1000 ℃ and the implication on the use of the Cu–Al–O system for oxygen storage and production[J]. RSC Adv,2016,6:113016−113024 doi: 10.1039/C6RA22712K
    [29]
    RAJESH C and RAON A Solid-state reaction based study synthesis and characterization for CuAl2O4 nanocrystalline powder[J]. Optik, 2023, 294 : 171472
    [30]
    TETSUJI Y , MAKOTO E, SHUICHI S, et al. Anomalous chemical shifts of Cu 2p and Cu LMM Auger spectra of silicate glasses[J]. J Electron Spectrosc, 2003, 131 : 133–144
    [31]
    CHEN K, FANG H, WU S et al. CO2 hydrogenation to methanol over Cu catalysts supported on La-modified SBA-15: The crucial role of Cu–LaO x interfaces[J]. Appl Catal B Environ,2019,251:119−129 doi: 10.1016/j.apcatb.2019.03.059
    [32]
    JI Y, LIN S, XU G, et al. Enhancing CO2 hydrogenation to methanol via constructing Cu–ZnO–La2O3 interfaces[J]. Catal Lett,2023,25:119−129
    [33]
    SUN X, JIN Y, CHENG Z, et al. Dual active sites over Cu-ZnO-ZrO2 catalysts for carbon dioxide hydrogenation to methanol[J]. J Environ Sci (China),2023,131:162−172 doi: 10.1016/j.jes.2022.10.002
    [34]
    ALVARO A, CARLOS A, MARTHA E, et al. XPS fitting model proposed to the study of Ni and La in deactivated FCC catalysts[J]. J Electron Spectrosc,2019,233:5−10 doi: 10.1016/j.elspec.2019.03.007
    [35]
    PAPARAZZO E. XPS, AES and EELS studies of Al surfaces[J]. Vacuum,2001,62:47−60 doi: 10.1016/S0042-207X(01)00123-3
    [36]
    ZHANG C, WANG L, ETIMU J, et al. Oxygen vacancies in Cu/TiO2 boost strong metal-support interaction and CO2 hydrogenation to methanol[J]. J Catal,2022,413:284−296 doi: 10.1016/j.jcat.2022.06.026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (47) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return