Turn off MathJax
Article Contents
WANG Min, GUO Shupeng, XU Jinshan, LI Liuzhong, CHEN Congbiao, MA Zhongyi, JIA Litao, HOU Bo, LI Debao. The promotional effects of ZrO2 modification on the activity and selectivity of Co/SiC catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60439-1
Citation: WANG Min, GUO Shupeng, XU Jinshan, LI Liuzhong, CHEN Congbiao, MA Zhongyi, JIA Litao, HOU Bo, LI Debao. The promotional effects of ZrO2 modification on the activity and selectivity of Co/SiC catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60439-1

The promotional effects of ZrO2 modification on the activity and selectivity of Co/SiC catalysts for Fischer-Tropsch synthesis

doi: 10.1016/S1872-5813(24)60439-1
Funds:  This work is financially supported by the Natural Science Foundation of Shanxi Province (202203021212005), Basic Research Program of Shanxi Province (20210302124466), Central guidance for local scientific and technological development funds (YDZJSX2021C041) and the Innovation Fund Project by ICC CAS (SCJC-DT-2022-06)
More Information
  • Co/SiC catalysts have exhibited excellent performance in Fischer-Tropsch synthesis reaction.,However, few research focuses on investigating the effect of SiC supports surface properties of on catalyst performance. In this study, ZrO2 was utilized to modify the SiC surface,leading to the preparation of a series of Co-ZrO2/SiC catalysts. The physicochemical properties of the catalyst were comprehensively analyzed by using N2 adsorption, XRD, H2-TPR, XPS analyses. Catalytic performance was evaluated using a fixed bed reactor, shedding light on the effect of ZrO2 modified SiC support on cobalt-based Fischer-Tropsch synthesis catalysts. The results indicated that ZrO2 surface modification on SiC resulted in an enhanced reduction degree of Co/SiC catalysts. Additionally, ZrO2 exhibited strong interaction with the amorphous phase on the SiC surface, thereby weakening the interaction between Co and the amorphous phase., This led to an increase in the electron density of cobalt species, consequently improving the selectivity of Co/SiC catalysts towards long-chain hydrocarbons.
  • loading
  • [1]
    FRATALOCCHI L, VISCONTI C G, LIETTI L, et al. On the performance of a Co-based catalyst supported on modified γ-Al2O3 during Fischer–Tropsch synthesis in the presence of co-fed water[J]. Catal Sci Technol,2016,6(16):6431−6440. doi: 10.1039/C6CY00583G
    [2]
    IGLESIA E. Fischer-Tropsch synthesis on cobalt catalysts: structural requirements and reaction pathways[J]. Stud Surf Sci Catal,1997,107:153−162.
    [3]
    IGLESIA E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts[J]. Appl Catal A-Gen,1997,161:59−78. doi: 10.1016/S0926-860X(97)00186-5
    [4]
    DEN OTTER J H, NIJVELD S R, DE JONG K P. Synergistic promotion of Co/SiO2 Fischer–Tropsch catalysts by niobia and platinum[J]. ACS Catal,2016,6(3):1616−1623. doi: 10.1021/acscatal.5b02418
    [5]
    BORG Ø, ERI S, BLEKKAN E A, et al. Fischer- Tropsch synthesis over γ-alumina-supported cobalt catalysts: effect of support variables[J]. J Catal,2007,248:89−100. doi: 10.1016/j.jcat.2007.03.008
    [6]
    BERTELLA F, CONCEPCIÓN P, MARTÍNEZ A. TiO2 polymorph dependent SMSI effect in Co-Ru/TiO2 catalysts and its relevance to Fischer-Tropsch synthesis[J]. Catal Today,2017,289:181−191. doi: 10.1016/j.cattod.2016.08.008
    [7]
    OSA A R D L, LUCAS A D, DÍAZ-MAROTO J, et al. FTS fuels production over different Co/SiC catalysts[J]. Catal Today,2012,187(1):173−182. doi: 10.1016/j.cattod.2011.12.029
    [8]
    TYMOWSKI B D, LIU Y, MENY C, et al. Co–Ru/SiC impregnated with ethanol as an effective catalyst for the Fischer–Tropsch synthesis[J]. Appl Catal A-Gen,2012,419:31−40.
    [9]
    OSA A R D L, LUCAS A D, ROMERO A, et al. Influence of the catalytic support on the industrial Fischer-Tropsch synthetic diesel production[J]. Catal Today,2011,167(1):298−302.
    [10]
    HOFFMANN C, PLATE P, STEINBRUCK A, et al. Nanoporous silicon carbide as nickel support for the carbon dioxide reforming of methane[J]. Catal Sci Technol,2015,5(8):4174−4183. doi: 10.1039/C4CY01234H
    [11]
    MASSON R, KELLER, VALÉRIE, ET AL. β-SiC alveolar foams as a structured photocatalytic support for the gas phase photocatalytic degradation of methylethylketone[J]. Appl Catal B,2015,170:301−311.
    [12]
    LIU Y, ERSEN O, MENY C, et al. Fischer-Tropsch reaction on a thermally conductive and reusable silicon carbide support[J]. Chem Sus Chem,2014,7(5):1218−1239. doi: 10.1002/cssc.201300921
    [13]
    TUCI G, LIU Y, ROSSIN A, et al. Porous silicon carbide (SiC): a chance for improving catalysts or just another active-phase carrier?[J]. Chem Rev,2021,121(17):10559−10665. doi: 10.1021/acs.chemrev.1c00269
    [14]
    NGUYEN P, PHAM C. Innovative porous SiC-based materials: From nanoscopic understandings to tunable carriers serving catalytic needs[J]. Appl Catal A-Gen,2011,391(1-2):443−454. doi: 10.1016/j.apcata.2010.07.054
    [15]
    LACROIX M, DREIBINE L, TYMOWSKI B D, et al. Silicon carbide foam composite containing cobalt as a highly selective and re-usable Fischer-Tropsch synthesis catalyst[J]. Appl Catal A-Gen,2011,397(1-2):62−72. doi: 10.1016/j.apcata.2011.02.012
    [16]
    PARK S J, KIM S M, WOO M H, et al. Effects of titanium impurity on alumina surface for the activity of Co/Ti-Al2O3 Fischer-Tropsch catalyst[J]. Appl Catal A-Gen,2012,419-420:148−155. doi: 10.1016/j.apcata.2012.01.022
    [17]
    MOENE R, MAKKEE M, MOULIJN J A. High surface area silicon carbide as catalyst support characterization and stability[J]. Appl Catal A-Gen,1998,167(2):321−330. doi: 10.1016/S0926-860X(97)00326-8
    [18]
    LIU Y, FLOREA I, ERSEN O, et al. Silicon carbide coated with TiO2 with enhanced cobalt active phase dispersion for Fischer-Tropsch synthesis[J]. Chem Commun,2015,51:145−148. doi: 10.1039/C4CC07469F
    [19]
    LEE B S, KOO H M, PARK M J, et al. Deactivation behavior of Co/SiC Fischer-Tropsch Catalysts by formation of filamentous carbon[J]. Catal Lett,2013,143:18−22. doi: 10.1007/s10562-012-0936-8
    [20]
    ALL S, CHEN B, GOODWIN J G. Zr promotion of Co/SiO2 for Fischer-Tropsch Synthesis[J]. J Catal,1995,157(1):35−41. doi: 10.1006/jcat.1995.1265
    [21]
    WONGSALEE T, JONGSOMJIT B, PRASERTHDAM P. Effect of zirconia-modified titania consisting of different phases on characteristics and catalytic properties of Co/TiO2 catalysts[J]. Catal Lett,2006,108:55−61. doi: 10.1007/s10562-006-0033-y
    [22]
    LU C, LIN Y, WANG I. Naphthalene hydrogenation over Pt/TiO2-ZrO2 and the behavior of strong metal-support interaction[J]. Appl Catal A- Gen,2000,1989(1-2):223−234.
    [23]
    RUPPERT A M, PARYJCZAK T. Pt/ZrO2/TiO2 catalysts for selective hydrogenation of crotonaldehyde: tuning the SMSI effect for optimum performance[J]. Appl Catal A-Gen,2007,320:80−90. doi: 10.1016/j.apcata.2006.12.019
    [24]
    MORADI G R, BASIR M M, TAEB A, et al. Promotion of Co/SiO2 Fischer-Tropsch catalysts with zirconium[J]. Catal Commun,2003,4(1):27−32. doi: 10.1016/S1566-7367(02)00243-1
    [25]
    JONGSOMJIT B, PANPRANOT J, GOODWIN J G. Effect of zirconia-modified alumina on the properties of Co/γ-Al2O3 catalysts[J]. Catal,2003,215(1):66−77. doi: 10.1016/S0021-9517(02)00102-1
    [26]
    XIONG H, ZHANG Y, LIEW K, et al. Catalytic performance of zirconium-modified Co/Al2O3 for Fischer–Tropsch synthesis[J]. J Mol Catal A-Chem,2005,231(1-2):145−151. doi: 10.1016/j.molcata.2004.12.033
    [27]
    BERTELLA F, CONCEPCIÓN P, MARTÍNEZ A. TiO2 polymorph dependent SMSI effect in Co-Ru/TiO2 catalysts and its relevance to Fischer-Tropsch synthesis[J]. Catal Today,2017,289:181−191. doi: 10.1016/j.cattod.2016.08.008
    [28]
    KUNGUROVA O, KHASSIN A, CHEREPANOVA S, et al. δ-Alumina supported cobalt catalysts promoted by ruthenium for FischerTropsch Synthesis[J]. Appl Catal A-Gen,2017,539:48−58. doi: 10.1016/j.apcata.2017.04.003
    [29]
    STEEN E, SEWELL G, MAKHOTHE R, et al. TPR study on the preparation of impregnated Co/SiO2 catalysts[J]. J Catal,1996,162:220−229. doi: 10.1006/jcat.1996.0279
    [30]
    JACOBS G, DAS T K, ZHANG Y, et al. Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts[J]. Appl Catal A- Gen,2002,233(1-2):263−281. doi: 10.1016/S0926-860X(02)00195-3
    [31]
    RIBEIRO N F P, SOUZA M M V M, SCHMAL M. Combustion synthesis of copper catalyst for selective CO oxidation[J]. J Power Sources,2008,179(1):329−334. doi: 10.1016/j.jpowsour.2007.12.096
    [32]
    AL-SALEH M A, HOSSAIN M M, SHALABI M A, et al. Hydrogen spillover effects on Pt–Rh modified Co–clay catalysts for heavy oil upgrading[J]. Appl Catal A-Gen,2003,253(2):453−459. doi: 10.1016/j.apcata.2003.06.001
    [33]
    HOSSAIN M M, THESIS M S. King fahd university of petroleum and minerals[D]. Dhaharn, Saudi Arabia, 2000.
    [34]
    WU G, WANG L, LIU M, et al. Research on the role of reverse hydrogen and water spillover in methanol decomposition over Cu/ZrO2 catalyst[J]. Acta Chim Sinica,2006,64(10):1017−1021.
    [35]
    ZHANG H, DONG A, LIU B, et al. Hydrogen spillover effects in the Fischer–Tropsch reaction over carbon nanotube supported cobalt catalysts[J]. Catal Sci Technol,2023,13(6):1888−1904. doi: 10.1039/D3CY00014A
    [36]
    LUALDI M, CARLO G D, LGDBERG S, et al. Effect of Ti and Al addition via direct synthesis to SBA-15 as support for cobalt based Fischer-Tropsch catalysts[J]. Appl Catal A-Gen,2012,443-444(1):76−86.
    [37]
    LI Z, WU J, YU J, et al. Effect of incorporation manner of Zr on the Co/SBA-15 catalyst for the Fischer–Tropsch synthesis[J]. J. Mol. Catal. A-Chem,2016,424:384−392. doi: 10.1016/j.molcata.2016.09.025
    [38]
    SHIMODA K, PARK J, HINOKI T, et al. Influence of surface structure of SiC nano-sized powder analyzed by X-ray photoelectron spectroscopy on basic powder characteristics[J]. Appl Surf. Sci,2007,253(24):9450−56. doi: 10.1016/j.apsusc.2007.06.023
    [39]
    DAMYANOVA S, PETROV L, GRANGE P. XPS characterization of zirconium-promoted CoMo hydrodesulfurization catalysts[J]. Appl Catal A- Gen,2003,239(1-2):241−252. doi: 10.1016/S0926-860X(02)00385-X
    [40]
    XIONG H, ZHANG Y, LIEW K, et al. Catalytic performance of zirconium-modified Co/Al2O3 for Fischer–Tropsch synthesis[J]. J Mol Catal A- Chem,2005,231(1-2):145−151. doi: 10.1016/j.molcata.2004.12.033
    [41]
    JUNG S M, DOPUNT O, GRANGE P. TiO2-SiO2 mixed oxide modified with H2SO4: I. Characterization of the microstructure of metal oxide and sulfate[J]. Appl Catal A- Gen,2001,208(1-2):393−401. doi: 10.1016/S0926-860X(00)00737-7
    [42]
    LIU J, LIAO S, JIANG G, et al. Preparation, characterization and catalytic activity of Zr embedded MSU-V with high thermal and hydrothermal stability[J]. Micropor Mesopo Mater,2006,95:306−311. doi: 10.1016/j.micromeso.2006.06.003
    [43]
    SHEN J, SONG C. Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells[J]. Catal Today,2002,77(1-2):89−98. doi: 10.1016/S0920-5861(02)00235-3
    [44]
    ARENA F, BARBERA K, ITALIANO G, et al. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol[J]. J Catal,2007,249(2):185−194. doi: 10.1016/j.jcat.2007.04.003
    [45]
    ISHIHARA T, EGICHI K, ARAI H. Importance of surface hydrogen concentration in enhancing activity of Co Ni alloy catalyst for CO hydrogenation[J]. J Mol Catal,1992,72(2):253−261. doi: 10.1016/0304-5102(92)80050-Q
    [46]
    SHIMURA K, MIYAZAWA T, HANAOKA T, et al. Fischer-Tropsch synthesis over alumina supported cobalt catalyst: effect of promoter addition[J]. Appl Catal A- Gen,2015,494:1−11. doi: 10.1016/j.apcata.2015.01.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (24) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return