Turn off MathJax
Article Contents
WANG Jucai, TANG Ke, SUN Xiaodi, HONG Xin. Theoretical Calculations of Pyridine Adsorption on the Surfaces of Ti, Zr, N Doped Graphene[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60440-8
Citation: WANG Jucai, TANG Ke, SUN Xiaodi, HONG Xin. Theoretical Calculations of Pyridine Adsorption on the Surfaces of Ti, Zr, N Doped Graphene[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60440-8

Theoretical Calculations of Pyridine Adsorption on the Surfaces of Ti, Zr, N Doped Graphene

doi: 10.1016/S1872-5813(24)60440-8
Funds:  The project was supported by the Science and Technology Program of Liaoning Provincial (2019-ZD-0699) and Liaoning Provincial Department of Education basic research projects (JYTMS20230835).
  • Received Date: 2023-11-26
  • Accepted Date: 2024-03-04
  • Rev Recd Date: 2024-02-08
  • Available Online: 2024-04-03
  • The removal of nitrides from diesel fuel has important significance for the environment and human health. The adsorption behaviour of Ti, Zr and N-doped and intrinsic graphene on pyridine, a typical basic nitride in diesel fuel, has been investigated by density functional methods in this paper. the corresponding adsorption energy, adsorption configurations, Mulliken charge transfer, differential charge density, and density of states were discussed. The results show that metal Ti and Zr doping can significantly enhance the adsorption energy between pyridine and graphene surfaces, and non-metal N doping can slightly increase the adsorption energy between pyridine and graphene surfaces. The magnitude of the adsorption energy of pyridine on the surface of graphene modified with different atoms was in the order of Ti doped graphene > Zr doped graphene > N doped graphene > intrinsic graphene, Pyridine could undergo N-Ti, N-Zr and π-π interactions with Ti and Zr doped graphene, and N-N, C-N and π-π interactions with N doped graphene and intrinsic graphene. Further analysis reveals that there are obvious electron transfer and chemical bond formation between pyridine and metallic Ti, Zr-doped graphene surfaces, while there is no chemical bond formation with non-metallic N-doped graphene and intrinsic graphene. Chemical adsorption interaction of pyridine with Ti, Zr-doped graphene, physical adsorption interaction with N-doped graphene and intrinsic graphene. Pyridine was more stable adsorption on the surface of Ti Zr-doped graphene.
  • loading
  • [1]
    李玲. 燃油脱氮的可见光光催化剂制备及其性能研究[D]. 福建: 福建师范大学, 2013: 5-20.

    LI Ling. Visible-light photocatalysts for denitrogenation of fuel oil: preparation and characterization[D]. Fujian Normal University, 2013: 5-20.)
    [2]
    WU Ying, XIAO Jing, WU Luoming, et al. Adsorptive denitrogenation of fuel over metal organic frameworks: Effect of N-types and adsorption mechanisms[J]. J. Phys. Chem. C,2014,118(39):22533−22543. doi: 10.1021/jp5045817
    [3]
    Ahmed I, Khan N A, Jhung S H. Adsorptive denitrogenation of model fuel by functionalized UiO-66 with acidic and basic moieties[J]. Chem. Eng. J,2017,321(1):40−47.
    [4]
    ZHANG Jun, HUANG Lei, LIN Xiongchao, et al. Effective adsorptive denitrogenation from model fuels over CeY zeolite[J]. Ind. Eng. Chem. Res,2022,61(39):14586−14597. doi: 10.1021/acs.iecr.2c01204
    [5]
    WEN Jie, LIN Hongfei, HAN Xue, et al. Physicochemical studies of adsorptive denitrogenation by oxidized activated carbons[J]. Ind. Eng. Chem. Res,2017,56(17):5033−5041. doi: 10.1021/acs.iecr.6b05015
    [6]
    Xin Hu, Zareen Zuhra, Shafqat Ali, et al. Adsorptive denitrogenation of model oil by MOF(Al)@GO composites: remarkable adsorption capacity and high selectivity[J]. New. J. Chem,2023,47(7):3306−3311. doi: 10.1039/D2NJ06032A
    [7]
    LI Zimeng , LIANG Hongwei , LI Xiaoling, et al. Adjusting surface acidity of hollow mesoporous carbon nanospheres for enhanced adsorptive denitrogenation of fuels[J]. Chem. Eng. Sci, 2020, 228(31): 115963.
    [8]
    Arvin Saffarian Delkhosh, Amir Vahid, Sahar Baniyaghoob, et al. Deep denitrogenation of model diesel fuel using Ni-doped mesoporous carbon: synthesis route and adsorption study[J]. ChemistrySelect.,2021,6(5):1073−1081. doi: 10.1002/slct.202004522
    [9]
    Narjes Ghaloum, Muhieddine A. Safa, Mohammed S. Alshemali, et al. Adsorptive denitrogenation of coker diesel over carbon-based adsorbents for producing ultralow-sulfur diesel[J]. Ind. Eng. Chem. Res,2023,62(50):21777−21786. doi: 10.1021/acs.iecr.3c03424
    [10]
    原卫华, 毕世华, 曹茂盛. 石墨烯吸附甲醛的第一性原理研究[J]. 材料导报,2015,29(18):156−159.

    YUAN Weihua, BI Shihua, CAO Maosheng. Formaldehyde molecule adsorbed on graphene: a first principles study[J]. M. R,2015,29(18):156−159.
    [11]
    罗慧娟. 石墨烯的结构掺杂及分子吸附性能研究[D]. 西北工业大学, 2017: 12-14.

    LUO Huijuan. Structural modifications and adsorption properties of graphene[D]. Northwestern Polytechnical University, 2017: 12-14.)
    [12]
    ZHANG Hongping, He Weidong, Luo Xuegang, et al. Adsorption of 2, 3, 7, 8-tetrochlorodibenzo-p-dioxins on intrinsic, defected, and Ti (N, Ag) doped graphene: a DFT study[J]. J. Mol. Model,2014,20(5):1−7.
    [13]
    DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J. Chem. Phys,1990,92(1):508−517. doi: 10.1063/1.458452
    [14]
    DELLEY B. From molecules to solids with the DMol3 approach[J]. J. Chem. Phys,2000,113(18):7756−7764. doi: 10.1063/1.1316015
    [15]
    DELLEY B. DMol3 DFT studies: from molecules and molecular environments to surfaces and solids[J]. Comp. Mater. Sci,2000,17(2):122−126.
    [16]
    KRESSE G, FURTHMÜLLER J. Generalized gradient approximation made simple[J]. Phys. Rev. Lett,1996,77(18):3865−3868. doi: 10.1103/PhysRevLett.77.3865
    [17]
    TKATCHENKO A, SCHEFFLER M. Accurate van der waals interactions from(semi)-local density functional theory[A]. APS. Meeting. Abstracts[C]. APS. Sites, 2009: 248.
    [18]
    Yoshitaka Fujimoto, Susumu Saito. Formation, stabilities, and electronic properties of nitrogen defects in graphene[J]. Phys. Rev. B, 2011, 88(24): 245446(1-7).
    [19]
    WANG Menghao, GUO Yanan, WANG Qun, et al. Density functional theory study of interactions between glycine and TiO2/graphene nanocomposites[J]. Chem. Phys. Lett,2014,599(4):86−91.
    [20]
    ZHANG Hongping, LUO Xuegang, LIN Xiaoyang, et al. Density functional theory calculations of hydrogen adsorption on Ti-, Zn-, Zr-, Al-, and N-doped and intrinsic graphene sheets[J]. Int. J. Hydrogen Energy,2013,38(33):14269−14275. doi: 10.1016/j.ijhydene.2013.07.098
    [21]
    BEATRIZ CORDERO, VERONICA GOMEZ, ANA E, et al. Covalent radii revisited[J]. Dalton Trans,2008,37(21):2832−2838.
    [22]
    LI Jieyuan, HOU Meiling, CHEN Yanqiu, et al. Enhanced CO2 capture on graphene via N, S dual-doping[J]. Appl. Surf. Sci,2017,399(6):420−425.
    [23]
    HOU Meiling, ZHANG Xin, YUAN Shandong, et al. Double graphitic-N doping for enhanced catalytic oxidation activity of carbocatalysts[J]. Phys. Chem. Chem. Phys,2019,21(10):5481−5488. doi: 10.1039/C8CP07317A
    [24]
    DAI Jiayu, YUAN Jianmin, Giannozzi Paolo. Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study[J]. Appl. Phys. Lett, 2009, 95(23): 232105(1-3).
    [25]
    CHEN Ying, LIU Yuejie, Wang Hongxia, et al. Silicon-doped graphene: an effective and metal-free catalyst for NO reduction into N2O ?[J]. ACS Appl Mater Interfaces,2013,5(13):5994−6000. doi: 10.1021/am400563g
    [26]
    CHEN Jianhoung, CHEN Hsintsung. Computational explanation for interaction between amino acid and nitrogen-containing graphene[J]. Theor. Chem. Acc,2018,137(12):176−187. doi: 10.1007/s00214-018-2392-z
    [27]
    李巧灵, 吴晓宇, 王学伟, 等. 多孔BN选择性去除燃油中硫化合物的密度泛函理论研究[J]. 化工学报,2020,71(10):4601−4610.

    LI Qiaoling, WU Xiaoyu, WANG Xuewei, et al. Porous BN for selective adsorption of sulfur-containing compounds from fuel oil: DFT study[J]. CIESC Journal,2020,71(10):4601−4610.
    [28]
    SANTIAGO ALVAREZ. A cartography of the van der Waals territories[J]. Dalton Trans,2013,42(24):8617−8636. doi: 10.1039/c3dt50599e
    [29]
    厉志鹏, 牛胜利, 赵改菊, 等. Sr掺杂对CaO(100)表面吸附甲醇影响的分子模拟[J]. 燃料化学学报,2020,48(2):172−178. doi: 10.1016/S1872-5813(20)30008-6

    LI Zhipeng, NIU Shengli, ZHAO Gaiju, et al. Molecular simulation study of strontium doping on the adsorption of methanol on CaO(100) surface[J]. J Fuel Chem Technol,2020,48(2):172−178. doi: 10.1016/S1872-5813(20)30008-6
    [30]
    张文杰, 侯美伶, 周兴, 等, 基于第一性原理计算硫化氢(H2S)在Pt-graphene上的吸附性能和解离机理[J]. 燃料化学学报, 2022, 50(9): 1211-1220.

    ZHANG Wenjie, HOU Meiling, ZHOU Xing, et al. A theoretical study of H2S adsorption and dissociation mechanism on defected graphene doped with Pt[J]. J Fuel Chem Technol, 2022, 50(9): 1211-1220.)
    [31]
    王建辉, 崔建中, 王兴尧, 等. 无机化学[M]. 五版. 北京: 高等教育出版社, 2018: 334.

    WANG Jianhui, CUI Jianzhong, WANG Xingxiao, et al. Inorganic chemistry[M], 5nd ed, Beijing: Higher Education Press, 2018: 334.)
    [32]
    柴汝宽, 刘月田, 杨莉, 等. 乙酸在方解石表面吸附的密度泛函研究[J]. 中南大学学报(自然科学版),2019,50(5):1252−1262.

    CHAI Rukuan, LIU Yuetian, YANG Li, et al. Density functional theory analysis of acetic acid adsorption on CaCO3(104) surface[J]. J. Cent. South Univ(Science and Technology),2019,50(5):1252−1262.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (25) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return