Turn off MathJax
Article Contents
ZHENG Ke, LIU Bing, XU Yuebing, LIU Xiaohao. Study on the effects of Rh loading on the selectivity to methanol and ethanol in CO2 hydrogenation reaction over Rh/CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60450-0
Citation: ZHENG Ke, LIU Bing, XU Yuebing, LIU Xiaohao. Study on the effects of Rh loading on the selectivity to methanol and ethanol in CO2 hydrogenation reaction over Rh/CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60450-0

Study on the effects of Rh loading on the selectivity to methanol and ethanol in CO2 hydrogenation reaction over Rh/CeO2 catalyst

doi: 10.1016/S1872-5813(24)60450-0
Funds:  The project was supported by the National Key Research and Development program of China (2023YFB4103201) and the National Natural Science Foundation of China (22379053).
  • Received Date: 2024-03-01
  • Accepted Date: 2024-03-25
  • Rev Recd Date: 2024-03-22
  • Available Online: 2024-04-29
  • The capture and hydrogenation of carbon dioxide (CO2) into high-value chemicals such as alcohols is one of the important ways to reduce CO2 emissions and achieve the circular economy. This study investigated the catalytic performance of Rh/CeO2 catalysts with different Rh loadings in the range of 0.1%−2.0% in the CO2 hydrogenation reaction. Various characterizations including XRD, Raman, H2-TPR, CO2-TPD, CO-DRIFTS, and XPS were employed to reveal the influence of Rh loading on the catalytic activity and product selectivity. The results showed that ethanol was the major product for CO2 hydrogenation reaction at 250 ℃ and 3.0 MPa over 0.1% Rh/CeO2 catalyst. With the increase of Rh loading, CO2 conversion increased along with the decline in ethanol selectivity. When Rh loading reached 2.0%, the main product shifted to methanol. The difference in product selectivity over Rh/CeO2 catalysts with changed Rh loadings is related to the different structure and electronic properties of Rh. Atomically dispersed Rh+ species favor the stabilization of CO* and its subsequent C−C coupling with CH3* to form ethanol, while metallic Rh clusters facilitate the hydrogenation of CO* to form methanol.
  • loading
  • [1]
    LIU B, GENG S, ZHENG J, et al. Unravelling the new roles of Na and Mn promoter in CO2 hydrogenation over Fe3O4-based catalysts for enhanced selectivity to light α-olefins[J]. ChemCatChem,2018,10(20):4718−4732. doi: 10.1002/cctc.201800782
    [2]
    李梦婷, 段胜阳, 陈泓坤, 等. 二氧化碳加氢制备低碳烯烃用铁基催化剂的研究进展 [J]. 辽宁化工, 2023, 52(9): 1359-1361.

    LI Mengting , DUAN Shengyang , CHEN Hongkun, et al. Research progress of iron-based catalysts for CO2 hydrogenation to low-carbon olefins [J]. Liaoning Chem Ind, 2023, 52(9): 1359-1361.)
    [3]
    PENG G, SIBENER S J, SCHATZ G C, et al. CO2 hydrogenation to formic acid on Ni(111)[J]. J Phys Chem C,2012,116(4):3001−3006. doi: 10.1021/jp210408x
    [4]
    XU Y, SHI C, LIU B, et al. Selective production of aromatics from CO2[J]. Catal Sci Technol,2019,9(3):593−610. doi: 10.1039/C8CY02024H
    [5]
    NI Y, CHEN Z, FU Y, et al. Selective conversion of CO2 and H2 into aromatics[J]. Nat Commun,2018,9(1):3457. doi: 10.1038/s41467-018-05880-4
    [6]
    LIU C, KANG J, HUANG Z-Q, et al. Gallium nitride catalyzed the direct hydrogenation of carbon dioxide to dimethyl ether as primary product[J]. Nat Commun,2021,12(1):2305. doi: 10.1038/s41467-021-22568-4
    [7]
    CHEN J, ZHANG D, LIU B, et al. Photoinduced precise synthesis of diatomic Ir1Pd1-In2O3 for CO2 hydrogenation to methanol via angstrom-scale-distance dependent synergistic catalysis [J]. Angew Chem Int Ed, 2024, e202401168.
    [8]
    JIANG F, WANG S, LIU B, et al. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 Catalysts[J]. ACS Catal,2020,10(19):11493−11509. doi: 10.1021/acscatal.0c03324
    [9]
    庄会栋, 白绍芬, 刘欣梅, 等. Cu/ZrO2催化剂的结构及其CO2加氢合成甲醇催化反应性能[J]. 燃料化学学报,2010,038(04):462−467. doi: 10.1016/S1872-5813(10)60041-2

    ZHUANG Huidong, BAI Shaofen, LIU Xinmei, et al. Structure and performance of Cu/ZrO2 catalyst for the synthesis of methanol from CO2 hydrogenation[J]. J Fuel Chem Technol,2010,038(04):462−467. doi: 10.1016/S1872-5813(10)60041-2
    [10]
    CHEN J, ZHA Y, LIU B, et al. Rationally designed water enriched nano reactor for stable CO2 hydrogenation with near 100% ethanol selectivity over diatomic palladium active sites[J]. ACS Catal,2023,13(10):7110−7121. doi: 10.1021/acscatal.3c00586
    [11]
    张力婕, 韩爱国. CO2加氢制乙醇反应机理及催化剂研究进展[J]. 低碳化学与化工,2022,47(3):8−17.

    ZHANG Lijie, HAN Aiguo. Research progress on reaction mechanism and catalyst of CO2 hydrogenation to ethanol[J]. Nat Gas Chem Ind,2022,47(3):8−17.
    [12]
    MA K, ZHAO S, DOU M, et al. Enhancing the stability of methanol-to-olefins reaction catalyzed by SAPO-34 zeolite in the presence of CO2 and oxygen-vacancy-rich ZnCeZrO x[J]. ACS Catal,2024,14(2):594−607. doi: 10.1021/acscatal.3c04707
    [13]
    LIU C, USLAMIN E A, KHRAMENKOVA E, et al. High stability of methanol to aromatic conversion over bimetallic Ca, Ga-modified ZSM-5[J]. ACS Catal,2022,12(5):3189−3200. doi: 10.1021/acscatal.1c05481
    [14]
    Olah G A. After oil and gas: methanol economy[J]. Catal Lett,2004,93(1-2):1−2.
    [15]
    PANG J, ZHENG M, ZHANG T. Synthesis of ethanol and its catalytic conversion [M]. Adv catal, 2019: 89-191.
    [16]
    BAHRUJI H, BOWKER M, HUTCHINGS G, et al. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol[J]. J Catal,2016,343:133−146. doi: 10.1016/j.jcat.2016.03.017
    [17]
    BEHRENS M, STUDT F, KASATKIN I, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science,2012,336(6083):893−897. doi: 10.1126/science.1219831
    [18]
    LOU Y, JIANG F, ZHU W, et al. CeO2 supported Pd dimers boosting CO2 hydrogenation to ethanol[J]. Appl Catal B:Environ,2021,291:120122. doi: 10.1016/j.apcatb.2021.120122
    [19]
    MONTINI T, MELCHIONNA M, MONAI M, et al. Fundamentals and catalytic applications of CeO2-based materials[J]. Chem Rev,2016,116(10):5987−6041. doi: 10.1021/acs.chemrev.5b00603
    [20]
    JIANG F, JIANG F, WANG S, et al. Catalytic activity for CO2 hydrogenation is linearly dependent on generated oxygen vacancies over CeO2‐supported Pd catalysts[J]. ChemCatChem,2022,14(16):e202200422. doi: 10.1002/cctc.202200422
    [21]
    KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comp Mater Sci,1996,6(1):15−50. doi: 10.1016/0927-0256(96)00008-0
    [22]
    LIU B, LIU J, XIN L, et al. Unraveling reactivity descriptors and structure sensitivity in low-temperature NH3-SCR reaction over CeTiO x catalysts: a combined computational and experimental study[J]. ACS Catal,2021,11(13):7613−7636. doi: 10.1021/acscatal.1c00311
    [23]
    BLÖCHL P E. Projector augmented-wave method[J]. Phys Rev B,1994,50(24):17953−17979. doi: 10.1103/PhysRevB.50.17953
    [24]
    HENKELMAN G, JÓNSSON H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. J Phys Chem,2000,113(22):9978−9985. doi: 10.1063/1.1323224
    [25]
    HENKELMAN G, UBERUAGA B P, JÓNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J Phys Chem,2000,113(22):9901−9904. doi: 10.1063/1.1329672
    [26]
    HU Z, LIU X, MENG D, et al. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation[J]. ACS Catal,2016,6(4):2265−2279. doi: 10.1021/acscatal.5b02617
    [27]
    HUANG H, DAI Q, WANG X. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. Appl Catal B:Environ,2014,158-159:96−105. doi: 10.1016/j.apcatb.2014.01.062
    [28]
    SAKPAL T, LEFFERTS L. Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation[J]. J Catal,2018,367:171−180. doi: 10.1016/j.jcat.2018.08.027
    [29]
    LI X, QIN T, LI L, et al. One-pot synthesis of acetals by tandem hydroformylation-acetalization of olefins using heterogeneous supported catalysts[J]. Catal Lett,2021,151:2638−2646. doi: 10.1007/s10562-020-03504-5
    [30]
    LU X, WANG W, WEI S, et al. Initial reduction of CO2 on perfect and O-defective CeO2 (111) surfaces: towards CO or COOH?[J]. RSC Adv,2015,5(118):97528−97535. doi: 10.1039/C5RA17825H
    [31]
    MATSUBU J C, YANG V N, Christopher P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity[J]. J Am Chem Soc,2015,137(8):3076−3084. doi: 10.1021/ja5128133
    [32]
    YATES JR J, DUNCAN T, WORLEY S, et al. Infrared spectra of chemisorbed CO on Rh[J]. J Phys Chem,1979,70(3):1219−1224. doi: 10.1063/1.437603
    [33]
    HE H, DAI H, AU C. Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE= Ce, Pr) solid solutions[J]. Catal Today,2004,90(3-4):245−254. doi: 10.1016/j.cattod.2004.04.033
    [34]
    ZHANG G, HAN W, DONG F, et al. One pot synthesis of a highly efficient mesoporous ceria–titanium catalyst for selective catalytic reduction of NO[J]. RSC Adv,2016,6(80):76556−76567. doi: 10.1039/C6RA17840E
    [35]
    CHEN Y, ZHANG H, MA H, et al. Direct conversion of syngas to ethanol over Rh–Fe/γ-Al2O3 catalyst: Promotion effect of Li[J]. Catal Lett,2018,148:691−698. doi: 10.1007/s10562-017-2202-6
    [36]
    KAWAI M, UDA M, ICHIKAWA M. The electronic state of supported rhodium catalysts and the selectivity for the hydrogenation of carbon monoxide[J]. J Phys Chem,1985,89(9):1654−1656. doi: 10.1021/j100255a020
    [37]
    ZHANG F, ZHOU W, XIONG X, et al. Selective hydrogenation of CO2 to ethanol over sodium-modified rhodium nanoparticles embedded in zeolite silicalite-1[J]. J Phys Chem C,2021,125(44):24429−24439. doi: 10.1021/acs.jpcc.1c07862
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (30) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return