Turn off MathJax
Article Contents
TANG Bowen, ZHANG Rui, LIU Haiyun, JIN Lijun, HU Haoquan. Direct liquefaction behavior of Shenhua coal under CO containing atmosphere[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60451-2
Citation: TANG Bowen, ZHANG Rui, LIU Haiyun, JIN Lijun, HU Haoquan. Direct liquefaction behavior of Shenhua coal under CO containing atmosphere[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60451-2

Direct liquefaction behavior of Shenhua coal under CO containing atmosphere

doi: 10.1016/S1872-5813(24)60451-2
Funds:  The project was supported by China Shenhua Coal to Liquid and Chemical Co, LTD (MZYHG-22-02), and National Key Research and Development Program of China (2022YFB4101302).
  • Received Date: 2024-03-08
  • Accepted Date: 2024-04-09
  • Rev Recd Date: 2024-04-09
  • Available Online: 2024-04-29
  • Direct coal liquefaction (DCL) under CO or syngas atmosphere is beneficial to reduce the cost of hydrogen production. In this paper, the effects of CO on the liquefaction process of Shangwan coal were investigated by comparing the liquefaction behavior in three atmospheres of CO, H2, and N2. Then, the effects of different CO/H2 ratios and catalysts on the liquefaction process in syngas were investigated. The results indicated that the oil yield under the CO atmosphere reached 43.1%, which was 4.2% lower than that under H2, but 10.2% higher than that under N2. The liquefaction performance was further improved by adding the Shenhua 863 catalyst. It is analyzed that CO promoted liquefaction in two ways: water-gas shift reaction and the reaction between CO and organic structures of coal. Through the characterization of the products by GC-MS and FI-TR, it was found that CO makes the benzenes, aliphatics, and oxygen-containing compounds in liquefied oil simultaneously increased, the effect on functional groups and free radicals concentration in the solid products was not obvious. The experimental results under syngas showed that the highest oil yield, 57.4%, can be obtained in DCL with 20%CO syngas, and further improved by increasing the moisture content of coal appropriately. In addition, it was found that the Shenhua 863 catalyst has a good catalytic effect on the liquefaction process and also water-gas shift reaction. The research work provides a theoretical basis for the direct liquefaction of coal under syngas.
  • loading
  • [1]
    LIN B, XU B. How does fossil energy abundance affect China's economic growth and CO2 emissions ?[J]. Sci Total Environ,2020,719:137503. doi: 10.1016/j.scitotenv.2020.137503
    [2]
    李鑫, 李臣威, 张海军, 等. 浅析我国褐煤应用现状及问题研究[J]. 应用化工,2020,49(5):1226−1230. doi: 10.3969/j.issn.1671-3206.2020.05.038

    LI Xin, LI Chenwei, ZHANG Haijun, et al. Analysis on the status and problems of lignite application in China[J]. Appl Chem Ind,2020,49(5):1226−1230. doi: 10.3969/j.issn.1671-3206.2020.05.038
    [3]
    ALI A, ZHAO C. Direct liquefaction techniques on lignite coal: A review[J]. Chin J Catal,2020,41(3):375−389. doi: 10.1016/S1872-2067(19)63492-3
    [4]
    赵云鹏, 吴法鹏, 司兴刚, 等. 低阶煤催化加氢转化研究进展[J]. 煤炭学报,2021,46(4):1067−1079.

    ZHAO Yunpeng, WU Fapeng, SI Xinggang, et al. Advances in catalytic hydroconversion of low-rank coals[J]. J China Coal Soc,2021,46(4):1067−1079.
    [5]
    SUN Q, FLETCHER J J, ZHANG Y, et al. Comparative analysis of costs of alternative coal liquefaction processes[J]. Energy & fuels,2005,19(3):1160−1164.
    [6]
    LIU Z, SHI S, LI Y. Coal liquefaction technologies—Development in China and challenges in chemical reaction engineering[J]. Chem Eng Sci,2010,65(1):12−17. doi: 10.1016/j.ces.2009.05.014
    [7]
    MIKNIS F P, NETZEL D A, TURNER T F. Effect of different drying methods on coal structure and reactivity toward liquefaction[J]. Fuel and Energy Abstracts,1996,37(5):333.
    [8]
    FISHER F, SCHRADER H. The origin and chemical structure of coal[J]. Brennstoff chem,1921,2:37−45.
    [9]
    SHUI H, LIU J, WANG Z, et al. Preliminary study on liquefaction properties of Xiaolongtan lignite under different atmospheres[J]. J Fuel Chem Technol,2009,37(3):257−261. doi: 10.1016/S1872-5813(09)60019-0
    [10]
    徐熠. CO+H2O系统中褐煤直接液化的基础研究[D]. 上海: 华东理工大学, 2010.

    XU Yi. Initial Investigation of Coal Direct Liquefaction in the CO+H2O system[D]. Shanghai: East China University of Science and Technology, 2010.)
    [11]
    GUO Z, BAI Z, BAI J, et al. Co-liquefaction of lignite and sawdust under syngas[J]. Fuel Processing Technol,2011,92(1):119−125. doi: 10.1016/j.fuproc.2010.09.014
    [12]
    TAKEMURA Y, OUCHI K. Catalytic liquefaction of various coals using a mixture of carbon-monoxide and water[J]. Fuel,1983,62(10):1133−1137. doi: 10.1016/0016-2361(83)90052-2
    [13]
    OENSAN Z I. Catalytic processes for clean hydrogen production from hydrocarbons[J]. Turk J Chem,2007,31(5):531−550.
    [14]
    VASIREDDY S, MORREALE B, CUGINI A, et al. Clean liquid fuels from direct coal liquefaction: chemistry, catalysis, technological status and challenges[J]. Energy Environ Sci,2011,4(2):311−345. doi: 10.1039/C0EE00097C
    [15]
    SONDREAL E A, WILSON W G, STENBERG V I. Mechanisms leading to process improvements in lignite liquefaction using CO and H2S[J]. Fuel,1982,61(10):925−938. doi: 10.1016/0016-2361(82)90091-6
    [16]
    HODGES S, CREASY D E. The effect of alkali metal carbonate catalysts on the liquefaction of Victorian brown coal using carbon monoxide and steam[J]. Fuel,1985,64(9):1229−1234. doi: 10.1016/0016-2361(85)90180-2
    [17]
    LI H, PENG W, GU J, et al. Study on liquefaction characteristics of lignite in CO atmosphere[J]. J Anal Appl Pyrolysis,2023,172:105995. doi: 10.1016/j.jaap.2023.105995
    [18]
    舒歌平, 李文博, 史士东, 等. 一种高分散铁基煤直接液化催化剂及其制备方法: CN1274415C [P]. 2006-09-13.

    SHU Geping, LI Wenbo, SHI Shidong, et al. A highly dispersed iron-based coal direct liquefaction catalyst and its preparation method: CN1274415C [P]. 2006-09-13.)
    [19]
    王建友. 神华煤直接液化的催化加氢反应特性研究[D]. 大连: 大连理工大学, 2013.

    WANG Jianyou. Study on the Characteristics of Catalytic-hydrogenation in Direct Shenhua Coal Liquefaction[D]. Dalian: Dalian University of Technology, 2013.)
    [20]
    牛犇. 煤直接液化中溶剂的作用及氢传递机理[D]. 大连: 大连理工大学, 2017.

    NIU Ben. Role of solvents and hydrogen transfer mechanism in direct coal liquefaction[D]. Dalian: Dalian University of Technology, 2017.)
    [21]
    MRAZIKOVA J, SINDLER S, VEVERKA L, et al. Evolution of organic oxygen bonds during pyrolysis of coal[J]. Fuel,1986,65(3):342−345. doi: 10.1016/0016-2361(86)90293-0
    [22]
    钟金龙. 煤炭直接液化高压釜试验水产率的问题探讨[J]. 煤质技术,2016,(S1):41−42.

    ZHONG Jinlong. Discussion on water yield in direct coal liquefaction autoclave test[J]. Coal Quality Technology,2016,(S1):41−42.
    [23]
    单贤根, 曹雪萍, 舒歌平, 等. 煤直接液化条件下萘-四氢萘加氢转化反应行为[J]. 煤炭转化,2020,43(5):61−68.

    SHAN Xiangen, CAO xueping, SHU Geping, et al. Hydroconversion behavior of naphthalene-tetrahydronaphthalene under direct coal liquefaction[J]. Coal Convers,2020,43(5):61−68.
    [24]
    LI H, WU S, WU Y, et al. A Preliminary investigation of CO effects on lignite liquefaction process[J]. Fuel,2018,221:417−424. doi: 10.1016/j.fuel.2018.02.079
    [25]
    ZHAO R, HUANG S, WU Y, et al. Comparative study of the catalytic performances of Na2CO3 and γ-FeOOH in hydroliquefaction to propose a two-stage lignite catalytic liquefaction process[J]. Energy & fuels,2019,33(11):10678−10686.
    [26]
    YAN J, BAI Z, BAI J, et al. Effects of organic solvent treatment on the chemical structure and pyrolysis reactivity of brown coal[J]. Fuel,2014,128:39−45. doi: 10.1016/j.fuel.2014.03.001
    [27]
    熊言坤. 淖毛湖煤中有机质的结构研究[D]. 大连: 大连理工大学, 2020.

    XIONG Yankun. Structure investigation on organic matters of naomaohu coal[D]. Dalian: Dalian University of Technology, 2020.)
    [28]
    SISKIN M, KATRITZKY A R. Reactivity of organic compounds in hot water: geochemical and technological implications[J]. Science,1991,254(5029):231−237. doi: 10.1126/science.254.5029.231
    [29]
    刘振宇. 煤直接液化技术发展的化学脉络及化学工程挑战[J]. 化工进展,2010,29(2):193−197.

    LIU Zhenyu. Principal chemistry and chemical engineering challenges in direct coal liquefaction technology[J]. Chem Ind Eng Prog,2010,29(2):193−197.
    [30]
    PETRAKIS L, GRANDY D W. Free-radicals in coals and coal conversion. 2. Effect of liquefaction processing conditions on the formation and quenching of coal free-radicals[J]. Fuel,1980,59(4):227−232. doi: 10.1016/0016-2361(80)90139-8
    [31]
    PETRAKIS L, GRANDY D W. Free-radicals in coal and coal conversions. 6. Effects of liquefaction process variables on the insitu observation of free-radicals[J]. Fuel,1981,60(11):1017−1021. doi: 10.1016/0016-2361(81)90042-9
    [32]
    PETRAKIS L, GRANDY D W, JONES G L. Free-radicals in coal and coal conversions. 7. An in-depth experimental investigation and statistical correlative model of the effects of residence time, temperature and solvents[J]. Fuel,1982,61(1):21−28. doi: 10.1016/0016-2361(82)90288-5
    [33]
    TRUBETSKAYA A, JENSEN P A, JENSEN A D, et al. Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperatures[J]. Biomass Bioenergy,2016,94:117−129. doi: 10.1016/j.biombioe.2016.08.020
    [34]
    VEJERANO E, LOMNICKI S, DELLINGER B. Formation and Stabilization of Combustion-Generated Environmentally Persistent Free Radicals on an Fe(III)2O3/Silica Surface[J]. Environ Sci Technol,2011,45(2):589−594. doi: 10.1021/es102841s
    [35]
    PETRAKIS L, GRANDY D W. Electron spin resonance spectrometric study of free radicals in coals[J]. Anal Chem (Washington),1978,50(2):303−308. doi: 10.1021/ac50024a034
    [36]
    SONG Y, BUETTNER G R. Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide[J]. Free Radical Biol Med,2010,49(6):919−962. doi: 10.1016/j.freeradbiomed.2010.05.009
    [37]
    盛清涛, 凌开成, 杜晋安. 氢气在煤液化反应中的作用[J]. 煤化工,2003,31(6):29−32. doi: 10.3969/j.issn.1005-9598.2003.06.008

    SHENG Qingtao, LING Kaicheng, DU Jinan. Effect of hydrogen in coal liquefaction[J]. Coal Chem Ind,2003,31(6):29−32. doi: 10.3969/j.issn.1005-9598.2003.06.008
    [38]
    张银元, 赵景联. 煤直接液化技术的研究与开发[J]. 山西煤炭,2001,(2):32−36.

    ZHANG Yinyuan, ZHAO Jinglian. Research and development of direct coal liquefaction on technology[J]. Shanxi Coal,2001,(2):32−36.
    [39]
    HATA K, WATANABE Y, WADA K, et al. Iron sulfate sulfur-catalyzed liquefaction of Wandoan coal using syngas-water as a hydrogen source[J]. Fuel Processing Technol,1998,56(3):291−304. doi: 10.1016/S0378-3820(98)00058-7
    [40]
    ROSS D S, BLESSING J E. Hydroconversion of a bituminous coal with CO-H2O[J]. Fuel,1978,57(6):379−380. doi: 10.1016/0016-2361(78)90179-5
    [41]
    ROSS D S, NGUYEN Q. Coal conversion in aqueous systems[J]. Fluid Phase Equilib,1983,10(2-3):319−326. doi: 10.1016/0378-3812(83)80046-6
    [42]
    倪双跃, 高晋生, 朱之培. 我国年轻煤加氢液化研究Ⅰ. 几种年轻煤液化性能的考察[J]. 燃料化学学报,1985,(4):334−342.

    NI Shuangyue, GAO Jinsheng, ZHU Zhipei. Investigation on the hydrogenation liquefaction of Chinese low-rank coals I. Examination on the liquefaction behaviour of some low-rank coals[J]. J Fuel Chem Technol,1985,(4):334−342.
    [43]
    罗红梅, 曾桓兴. 纺锤型γ-FeOOH的合成及其热分析研究[J]. 中国科学技术大学学报,1995,(3):363−367.

    LUO Hongmei, ZENG Huanxing. Spindle-Type γ-FeOOH Crystallite Formation and Its Thermal Analysis[J]. J China Univ Sci Technol,1995,(3):363−367.
    [44]
    BARAJ E, CIAHOTNY K, HLINCIK T. The water gas shift reaction: Catalysts and reaction mechanism[J]. Fuel, 2021, 288.
    [45]
    LI L, HUANG S, WU S, et al. Roles of Na2CO3 in lignite hydroliquefaction with Fe-based catalyst[J]. Fuel Processing Technol,2015,138:109−115. doi: 10.1016/j.fuproc.2015.05.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (34) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return