Volume 49 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
GU Jing, CHENG Lei-lei, WANG Ya-zhuo, ZHANG Yuan-xiang, YUAN Hao-ran. High-pressure pyrolysis and its mechanism of polyethylene[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 395-406. doi: 10.19906/j.cnki.JFCT.2021028
Citation: GU Jing, CHENG Lei-lei, WANG Ya-zhuo, ZHANG Yuan-xiang, YUAN Hao-ran. High-pressure pyrolysis and its mechanism of polyethylene[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 395-406. doi: 10.19906/j.cnki.JFCT.2021028

High-pressure pyrolysis and its mechanism of polyethylene

doi: 10.19906/j.cnki.JFCT.2021028
Funds:  The project was supported by the National Key Research and Development Program of China (2018YFC1901200), National Natural Science Foundation of China (51976223) and Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0101).
  • Received Date: 2020-10-21
  • Rev Recd Date: 2020-11-27
  • Available Online: 2021-03-19
  • Publish Date: 2021-03-19
  • With the increasing waste disposal problems, high-value utilization technology using less energy is important to incentivize better recycling of plastic waste. Polyethylene high-pressure thermal cracking and catalytic pyrolysis experiments were conducted at a set temperature of 380 ℃ and low initial pressures (1−5) × 105 Pa. The process temperature curves were recorded and the hydrocarbon distribution of products was analyzed. The results suggest that the phase state in the pyrolysis system is a critical issue for reaction pathways. Thus, the pressure changes have different effects on the thermal cracking and catalytic pyrolysis of polyethylene. There is a phenomenon of thermal runaway during the polyethylene high-pressure pyrolysis process. The peak temperature represents a monotonous increase with the increasing initial pressure; the higher peak temperature leads to deeper cracking of polyethylene, giving more low-molecular-weight products. In the high-pressure catalytic pyrolysis experiments under the same other conditions, no thermal runaway is observed. The Zn-supported ZSM-5 catalyst converts polyethylene into aromatics, and the selectivity for monocyclic aromatics in the liquid phase is up to 82.53%. Moreover, the coke yield is less than 1.5%.
  • loading
  • [1]
    汪刚, 余广炜, 谢胜禹, 江汝清, 汪印. 添加不同塑料与污泥混合热解对生物炭中重金属的影响[J]. 燃料化学学报,2019,47(5):611−620. doi: 10.3969/j.issn.0253-2409.2019.05.013

    WANG Gang, YU Guang-wei, XIE Sheng-yu, JIANG Ru-qing, WANG Yin. Effect of co-pyrolysis of different plastics with sewage sludge on heavy metals in the biochar[J]. J Fuel Chem Technol,2019,47(5):611−620. doi: 10.3969/j.issn.0253-2409.2019.05.013
    [2]
    GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Sci Adv,2017,3(7):5.
    [3]
    MOHANRAJ C, SENTHILKUMAR T, CHANDRASEKAR M. A review on conversion techniques of liquid fuel from waste plastic materials[J]. Int J Energy Res,2017,41(11):1534−1552. doi: 10.1002/er.3720
    [4]
    KUMAR A, VON WOLFF N, RAUCH M, ZOU Y-Q, SHMUL G, BEN-DAVID Y, LEITUS G, AVRAM L, MILSTEIN D. Hydrogenative Depolymerization of Nylons[J]. JACS,2020,142(33):14267−14275. doi: 10.1021/jacs.0c05675
    [5]
    KRATISH Y, LI J, LIU S, GAO Y, MARKS T J. Polyethylene terephthalate deconstruction catalyzed by a carbon-supported single-Site molybdenum-dioxo complex [J]. Angew Chem Int Ed, 2020.
    [6]
    TENNAKOON A, WU X, PATERSON A L, PATNAIK S, PEI Y, LAPOINTE A M, AMMAL S C, HACKLER R A, HEYDEN A, SLOWING I I, COATES G W, DELFERRO M, PETERS B, HUANG W, SADOW A D, PERRAS F A. Catalytic upcycling of high-density polyethylene via a processive mechanism[J]. Nat Catal, 2020.
    [7]
    GU F, GUO J F, ZHANG W J, SUMMERS P A, HALL P. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study[J]. Sci Total Environ,2017,601:1192−1207.
    [8]
    VASILE C, BREBU M A, KARAYILDIRIM T, YANIK J, DARIE H. Feedstock recycling from plastics and thermosets fractions of used computers. II. Pyrolysis oil upgrading[J]. Fuel,2007,86(4):477−485. doi: 10.1016/j.fuel.2006.08.010
    [9]
    RAGAERT K, DELVA L, VAN GEEM K. Mechanical and chemical recycling of solid plastic waste[J]. Waste Management,2017,69:24−58. doi: 10.1016/j.wasman.2017.07.044
    [10]
    BAENA-GONZáLEZ J, SANTAMARIA-ECHART A, AGUIRRE J L, GONZÁLEZ S. Chemical recycling of plastic waste: Bitumen, solvents, and polystyrene from pyrolysis oil[J]. Waste Management,2020,118:139−149. doi: 10.1016/j.wasman.2020.08.035
    [11]
    ACHILIAS D S, ROUPAKIAS C, MEGALOKONOMOS P, LAPPAS A A, ANTONAKOU Ε V. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP)[J]. J Hazard Mater,2007,149(3):536−542. doi: 10.1016/j.jhazmat.2007.06.076
    [12]
    GRAUSE G. Resource control by a sustainability based currency equivalent[J]. J Clean Prod,2018,200:533−541. doi: 10.1016/j.jclepro.2018.07.297
    [13]
    孙锴, 王琬丽, 黄群星. 典型杂质掺混对废塑料热解油特性的影响[J]. 化工进展, 2020, 1-11.

    SUN Kai, WANG Wan-li, HUANG Qun-xing. Effect of typical impurities on the pyrolysis oil of waste plastics[J]. Chem Ind Eng Pro (China), 2020, 1-11.
    [14]
    孙艺蕾, 马跃, 李术元, 岳长涛. 聚烯烃塑料的热解和催化热解研究进展[J]. 化工进展, 2020, 1-21.

    SUN Yi-lei, MA Yue, LI Shu-yuan, YUE Chang-tao. Research progress in the pyrolysis and catalytic pyrolysis of waste polyolefin plastics[J]. Chem. Ind. & Eng. Pro. (China), 2020, 1-21.
    [15]
    AL-SALEM S M, ANTELAVA A, CONSTANTINOU A, MANOS G, DUTTA A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW)[J]. J Environ Manage,2017,197:177−98. doi: 10.1016/j.jenvman.2017.03.084
    [16]
    WONG S L, NGADI N, ABDULLAH T A T, INUWA I M. Current state and future prospects of plastic waste as source of fuel: A review[J]. Renewable Sustainable Energy Rev,2015,50:1167−80. doi: 10.1016/j.rser.2015.04.063
    [17]
    MURATA K, SATO K, SAKATA Y. Effect of pressure on thermal degradation of polyethylene[J]. J Anal Appl Pyrolysis, 2004, 71(2): 569-89.
    [18]
    KUMARI A, KUMAR S. Pyrolytic degradation of polyethylene in autoclave under high pressure to obtain fuel[J]. J Anal Appl Pyrolysis,2017,124:298−302. doi: 10.1016/j.jaap.2017.01.020
    [19]
    ONWUDILI J A, INSURA N, WILLIAMS P T. Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time[J]. J Anal Appl Pyrolysis,2009,86(2):293−303. doi: 10.1016/j.jaap.2009.07.008
    [20]
    CHENG L, GU J, WANG Y, ZHANG J, YUAN H, CHEN Y. Polyethylene high-pressure pyrolysis: Better product distribution and process mechanism analysis[J]. Chem Eng J,2020,385:123866. doi: 10.1016/j.cej.2019.123866
    [21]
    LOK C M, VAN DOORN J, ARANDA ALMANSA G. Promoted ZSM-5 catalysts for the production of bio-aromatics, a review[J]. Renew Sustainable Energy Rev,2019,113:109248. doi: 10.1016/j.rser.2019.109248
    [22]
    LÓPEZ A, DE MARCO I, CABALLERO B M, LARESGOITI M F, ADRADOS A. Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor[J]. Chem Eng J,2011,173(1):62−71. doi: 10.1016/j.cej.2011.07.037
    [23]
    MOSIO-MOSIEWSKI J, WARZALA M, MORAWSKI I, DOBRZANSKI T. High-pressure catalytic and thermal cracking of polyethylene[J]. Fuel Process Technol,2007,88(4):359−364. doi: 10.1016/j.fuproc.2006.10.009
    [24]
    SANTOS E, RIJO B, LEMOS F, LEMOS M A N D A. A catalytic reactive distillation approach to high density polyethylene pyrolysis – Part 2 – Middle olefin production[J]. Catal Today,2020,.
    [25]
    AKUBO K, NAHIL M A, WILLIAMS P T. Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts[J]. J Energy Inst,2019,92(1):195−202. doi: 10.1016/j.joei.2017.10.009
    [26]
    SUN K, HUANG Q, CHI Y, YAN J. Effect of ZnCl2-activated biochar on catalytic pyrolysis of mixed waste plastics for producing aromatic-enriched oil[J]. Waste Management,2018,81:128−137. doi: 10.1016/j.wasman.2018.09.054
    [27]
    SADRAMELI S M. Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review I: Thermal cracking review[J]. Fuel,2015,140:102−115. doi: 10.1016/j.fuel.2014.09.034
    [28]
    SERRANO D P, AGUADO J, ESCOLA J M. Developing advanced catalysts for the conversion of polyolefinic waste plastics into fuels and chemicals[J]. ACS Catal,2012,2(9):1924−1941. doi: 10.1021/cs3003403
    [29]
    李传强, 刘思媛, 王东升, 刘书彬, 郑旭煦, 袁小亚. 压力反应釜中低温热裂解废旧LLDPE塑料制备PE蜡[J]. 化工学报,2019,70(12):4856−4863.

    LI Chuan-qiang, LIU Si-yuan, WANG dong-sheng, LIU Shu-bin, ZHENG Xu-xu, YUAN Xiao-ya. Preparation of PE wax by pyrolysis of LLDPE waste plastic in a pressure reactor under low temperature[J]. CIESC J,2019,70(12):4856−4863.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (878) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return