Volume 49 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
LIU Guang-quan, PENG Li-ping, FAN Long, FU Ya-jun, WANG jin, CAO Lin-hong, WU Wei-dong. High durable activity binary alloy Pt-Ti thin film electrocatalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 978-985. doi: 10.19906/j.cnki.JFCT.2021037
Citation: LIU Guang-quan, PENG Li-ping, FAN Long, FU Ya-jun, WANG jin, CAO Lin-hong, WU Wei-dong. High durable activity binary alloy Pt-Ti thin film electrocatalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 978-985. doi: 10.19906/j.cnki.JFCT.2021037

High durable activity binary alloy Pt-Ti thin film electrocatalyst

doi: 10.19906/j.cnki.JFCT.2021037
Funds:  The project was supported by Research Center of Laser Fusion, China Academy of Engineering Physics Key Laboratory of Plasma Physics (ZY2019-03)
More Information
  • Corresponding author: Tel: 15883789962, E-mail: wuweidongding@163.com
  • Received Date: 2020-11-11
  • Rev Recd Date: 2021-01-13
  • Available Online: 2021-03-30
  • Publish Date: 2021-07-15
  • PtTi catalysts with particle size distribution of 8.3−12.5 nm and Pt loading capacity of 0.1 mg/cm2 were prepared by ultra-high vacuum dual-target co-sputtering system, and ultra-pure target as raw material. The structure, catalytic activity and durability of the prepared PtTi catalysts were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), durability pressure test (DST) and chronocurrent (I-t) methods, and the effect of the addition amount of Ti on the electrocatalytic performance of Pt-based alloy catalysts was investigated. The results show that the highest electrochemical active area (ECSA) is 186.14 m2/g, and after in-situ annealing at 600 ℃, the peak current density of direct-ethanol catalytic oxidation is 1448 A/g, and the stable current density value of 1100 s is 147.47 A/g, the attenuation rate of 3000 durability stress tests is 8.6%. The catalytic electrode studied in this work has excellent catalytic activity and high stability characteristics. It can be applied to the use of direct ethanol fuel cell electrodes and has extremely high application potential.
  • loading
  • [1]
    LAMY C, BELGSIR E M, LÉGER J M. Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell (DAFC)[J]. J Appl Electrochem,2001,31(7):799−809. doi: 10.1023/A:1017587310150
    [2]
    PRAKASH P P, GHADGE S D, JAMPANI H P, KANCHAN D M, BHARAT G, MURUGAVEL S P, KUMTA P N. Active and robust novel bilayer photoanode architectures for hydrogen generation via direct non-electric bias induced photo-electrochemical water splitting[J]. Int J Hydrog Energy,2018,131(43):58−76.
    [3]
    RIBEIRO J, ANJOS D M D, KOKOH K B, COUTANCEAU C, LÉGER J M, OLIVI P, ANDRADE A R D, TREMILIOSI-FILHO G. Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell[J]. Electrochim Acta,2007,52(24):6997−7006. doi: 10.1016/j.electacta.2007.05.017
    [4]
    YE W, SHOUZHONG Z, WEN-BIN C. Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: From reaction mechanisms to catalytic materials[J]. Catalysts,2015,5(3):1507−1534. doi: 10.3390/catal5031507
    [5]
    ZHANG J, XING C, SHI F. MoS2/Ti3C2 heterostructure for efficient visible-light photocatalytic hydrogen generation[J]. Int J Hydrogen Energy,2020,45(6):291−301.
    [6]
    LAMY C, ROUSSEAU S, BELGSIR E M, COUTANCEAU C, LÉGER J M. Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysts[J]. Electrochim Acta,2004,49(22/23):3901−3908. doi: 10.1016/j.electacta.2004.01.078
    [7]
    VINCENT I, BESSARABOV D. Low-cost hydrogen production by anion exchange membrane electrolysis: A review[J]. Renewable Sustainable Energy Rev,2018,81(1):690−704.
    [8]
    GUO S, DONG S, WANG E. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation[J]. ACS Nano,2009,4(1):547−555.
    [9]
    SCOFIELD M E, KOENIGSMANN C, WANG L, WONG S S. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction[J]. Energy Environ Sci,2014,8(1):350−363.
    [10]
    RUDI S, GAN L, CUI C, GLIECH M, STRASSER P. Electrochemical dealloying of bimetallic ORR nanoparticle catalysts at constant electrode potentials[J]. J Electrochem Soc,2015,162(4):F403−F409. doi: 10.1149/2.0621504jes
    [11]
    ERINI N, KRAUSE P, GLIECH M, YANG R, HUANG Y, STRASSER P. Comparative assessment of synthetic strategies toward active platinum-rhodium-tin electrocatalysts for efficient ethanol electro-oxidation[J]. J Power Sources,2015,294:299−304.
    [12]
    RIZO, RUBEN, SEBASTIAN, LÁZARO M J, PASTOR E. On the design of Pt-Sn efficient catalyst for carbon monoxide and ethanol oxidation in acid and alkaline media[J]. Appl Catal B: Environ,2017,200(2):246−254.
    [13]
    ANTOLINI E, COLMATI F, GONZALEZ E R. Ethanol oxidation on carbon-supported (PtSn)alloy/SnO2 and (PtSnPd)alloy/SnO2 catalysts with a fixed Pt/SnO2 atomic ratio: Effect of the alloy phase characteristics[J]. J Power Sources,2009,193(2):555−561. doi: 10.1016/j.jpowsour.2009.04.039
    [14]
    SPENDELOW J S, WIECKOWSKI A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media[J]. Phys Chem Chem Phys,2007,9(21):2654−2675. doi: 10.1039/b703315j
    [15]
    VINCENT I, KRUGER A, BESSARABOV D. Development of an efficient mem-brane electrode assembly for low-cost hydrogen production by anion exchange membrane electrolysis[J]. Int J Hydrog Energy,2017,42(107):52−61.
    [16]
    VALERIO NETO, EDMUNDO S, GOMES, SALAZAR-BANDA G R, EGUILUZ K I B. Pt and Pt-Rh nanowires supported on carbon and SnO2: Sb nanoparticles for ethanol electrochemical oxidation in acidic media[J]. Int J Hydrog Energy,2018,43(1):178−188. doi: 10.1016/j.ijhydene.2017.11.014
    [17]
    KATTEL S, DUAN Z, WANG G. Density functional theory study of an oxygen reduction reaction on a Pt3Ti alloy electrocatalyst[J]. J Phys Chem C,2013,117(14):7107−7113. doi: 10.1021/jp400158r
    [18]
    ZHOU Q, XU C. Stratified nanoporous PtTi alloys for hydrolysis of ammonia borane[J]. J Colloid Interface Sci,2017,496:235−242. doi: 10.1016/j.jcis.2017.02.030
    [19]
    HOGARTH M P, RALPH T R. Catalysis for low-temperature fuel cells[J]. Platin Met Rev,2002,46(4):146−164.
    [20]
    OZTURK O, OZDEMIR O K, ULUSOY I, AHSEN A S, SLAUCHEVA E. Effect of Ti sublayer on the ORR catalytic efficiency of dc magnetron sputtered thin Pt films[J]. Int J Hydrog Energy,2010,35(10):4466−4473. doi: 10.1016/j.ijhydene.2010.02.077
    [21]
    SIEVERS G, MUELLER S, QUADE A, STEFFEN F, JAKUBITH S, KRUTH A, BRUESER V. Mesoporous Pt-Co oxygen reduction reaction (ORR) catalysts for low temperature proton exchange membrane fuel cell synthesized by alternating sputtering[J]. J Power Sources,2014,268(dec. 5):255−260.
    [22]
    OSTROVERKH A, DUBAU M, JOHÁNEK V, VÁCLAV M, MÍD B, VELTRUSKÁ K, OSTROVERKH Y, FIALA R, MATOLÍN V. Efficient Pt‐C MEA for pemfc with low platinum content prepared by magnetron sputtering[J]. Fuel Cells,2018,18(1):51−56. doi: 10.1002/fuce.201700137
    [23]
    MOUGENOT M, CAILLARD A, BRAULT P, BARANTON S, COUTANCEAU C. High-performance plasma sputtered PdPt fuel cell electrodes with ultra-low loading[J]. Int J Hydrog Energy,2011,36(14):8429−8434. doi: 10.1016/j.ijhydene.2011.04.080
    [24]
    LI Y H, HONG J R. Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor[J]. ACS Appl Energy Mater,2018,211(84):3−53.
    [25]
    SEGER B, KAMAT P V. Electrocatalytically active graphene-platinum nanocomposites. role of 2-D carbon support in PEM fuel cells[J]. J Phys Chem C,2009,113(19):7990−7995. doi: 10.1021/jp900360k
    [26]
    HSU R S, HIGGINS D, CHEN Z. Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells[J]. Nanotechnology,2010,21(16):165705. doi: 10.1088/0957-4484/21/16/165705
    [27]
    BELLOSTA VON COLBE J, ARES J-R, BARALE J, BARICCO M, BUCKLEY C, CAPURSO G. Application of hydrides in hydrogen storage and compression: achievements, outlook and perspectives[J]. Int J Hydrog Energy,2019,44(7):780−808.
    [28]
    PHILLIPS R, DUNNILL C W. Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas[J]. RSC Adv,2016,100(6):43−51.
    [29]
    MOHSIN M, RASHEED A K, SAIDUR R. Economic viability and production capacity of wind-generated renewable hydrogen[J]. Int J Hydrog Energy,2018,26(43):21−30.
    [30]
    OUMA C N, MODISHA P M, BESSARABOV D. Catalytic dehydrogenation of the liquid organic hydrogen carrier octa hydro indole on Pt (111) surface: ab initio insights from density functional theory calculations[J]. Appl Surf Sci,2019,471(10):34−40.
    [31]
    SHEN Y, ZHANG M Z, XIAO K, XI J. Synthesis of Pt, PtRh, and PtRhNi alloys supported by pristine graphene nanosheets for ethanol electrooxidation[J]. ChemCatChem,2014,6(11):3254−3261. doi: 10.1002/cctc.201402629
    [32]
    CELEK M S, PINARBAS A. Investigations on performance and emission characteristics of an industrial low swirl burner while burning natural gas, methane, hydrogen-enriched natural gas, and hydrogen as fuels[J]. Int J Hydrog Energy,2018,43(1):194−207.
    [33]
    DU PREEZ S P, JONES D R, BESSARABOV D G, FALCH A, MOTA DAS NEVES QUARESMA C, DUNNILL C W. Development of a Pt/stainless steel mesh catalyst and its application in catalytic hydrogen combustion[J]. Int J Hydrog Energy,2019,44(27):94−106.
    [34]
    LV Q, XIAO Y, YIN M, GE J, XING W, LIU C. Reconstructed PtFe alloy nanoparticles with bulk-surface differential structure for methanol oxidation[J]. Electrochim Acta,2014,139:61−68.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (464) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return