Volume 49 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
WU Yong, NIAN Pei, LIU Zhe, ZHANG Jin-peng, WANG Rui-han, WANG Nai-liang, BAI Hong-cun, GUO Qing-jie. Molecular simulation of graphyne separation performance for ethane, ethylene and acetylene[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 1034-1041. doi: 10.19906/j.cnki.JFCT.2021039
Citation: WU Yong, NIAN Pei, LIU Zhe, ZHANG Jin-peng, WANG Rui-han, WANG Nai-liang, BAI Hong-cun, GUO Qing-jie. Molecular simulation of graphyne separation performance for ethane, ethylene and acetylene[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 1034-1041. doi: 10.19906/j.cnki.JFCT.2021039

Molecular simulation of graphyne separation performance for ethane, ethylene and acetylene

doi: 10.19906/j.cnki.JFCT.2021039
Funds:  The project was supported by National Natural Science Foundation of China (21863008, 22008125), First Class Discipline Construction Project of Ningxia University (NXYLXK2017A04).
  • Received Date: 2020-12-15
  • Rev Recd Date: 2021-01-16
  • Available Online: 2021-03-30
  • Publish Date: 2021-07-15
  • Ethylene is an important chemical raw material. In the process of traditional steam cracking to produce ethylene, by-products such as acetylene and ethane are produced. How to effectively separate these three hydrocarbon gases is very important. Based on the density functional theory, this paper systematically explored the adsorption, selection and permeation properties of the graphyne membrane for three gases. Combining adsorption analysis and reduced density gradient analysis, the interaction type, strength and action area of the three gas molecules penetrating the graphyne membrane were explored, and a quantum mechanical explanation of the separation performance was given. The results show that the selectivity of graphyne membrane to acetylene/ethylene, acetylene/ethane, ethylene/ethane can reach 2 × 105, 4 × 107, 165, respectively at room temperature; the permeability of acetylene at room temperature is about 6.54 × 10−5 mol/(m2·s·Pa), which is about 5 orders of magnitude higher than the industrial standard, and the ethylene permeability reaches the industrial standard at about 400 K. Through the analysis of quantum mechanics, the interaction area between the gas molecules and the graphyne film is between the gas molecules and the center of the graphyne framework, and the type of action is mainly van der Waals interaction, as the gas molecules penetrate closer to the graphite acetylene membrane, the interaction becomes stronger and the strength of interaction is higher than that of acetylene, which is consistent with the energy barrier calculation.
  • loading
  • [1]
    QIAO Z, ZHAO S, SHENG M, WANG J, WANG S, WANG Z, ZHONG C, GUIVER M D. Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes[J]. Nat Meter,2019,18(2):163−168. doi: 10.1038/s41563-018-0221-3
    [2]
    BACHMAN J E, SMITH Z P, LI T, XU T, LONG J R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals[J]. Nat Meter,2016,15(8):845−849. doi: 10.1038/nmat4621
    [3]
    XU L, RUNGTA M, KOROS W J. Matrimid (R) derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation[J]. J Membr Sci,2011,380(1/2):138−147. doi: 10.1016/j.memsci.2011.06.037
    [4]
    HAYASHI J, MIZUTA H, YAMAMOTO M, KUSAKABE K, MOROOKA S, SUH S. Separation of ethane/ethylene and propane/propylene systems with a carbonized bpda-pp‘oda polyimide membrane[J]. Ind Eng Chem Res,1996,35(11):4176−4181. doi: 10.1021/ie960264n
    [5]
    KANEZASHI M, SHAZWANI W N, YOSHIOKA T, TSURU T. Separation of propylene/propane binary mixtures by bis(triethoxysilyl) methane (BTESM)-derived silica membranes fabricated at different calcination temperatures[J]. J Membr Sci,2012,415-416:478−485. doi: 10.1016/j.memsci.2012.05.034
    [6]
    LIU D, MA X, XI H, LIN Y S. Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes[J]. J Membr Sci,2014,451:85−93. doi: 10.1016/j.memsci.2013.09.029
    [7]
    DOU H, XU M, JIANG B, WEN G, ZHAO L, WANG B, YU A, BAI Z, SUN Y, ZHANG L, CHEN Z, JIANG Z. Bioinspired graphene oxide membranes with dual transport mechanisms for precise molecular separation[J]. Adv Funct Mater,2019,29(50):1905229. doi: 10.1002/adfm.201905229
    [8]
    YUN J, ZHANG Y, XU M, YAN J, ZHAO W, ZHANG Z. DFT study of the effect of BN pair doping on the electronic and optical properties of graphyne nanosheets[J]. J Membr Sci,2017,52(17):10294−10307.
    [9]
    李勇军, 李玉良. 二维高分子——新碳同素异形体石墨炔研究[J]. 高分子学报,2015,(2):147−165.

    LI Yong-jun, LI Yu-liang. A study on two dimensional macromolecule Foshan allotrope of carbon[J]. Acta Polym Sin,2015,(2):147−165.
    [10]
    LI G, LI Y, LIU H, GUO Y, LI Y, ZHU D. Architecture of graphdiyne nanoscale films[J]. Chem Commun (Camb),2010,46(19):3256−3258. doi: 10.1039/b922733d
    [11]
    LI H, WANG X, LI Z, PAN S. Theoretical study on the structure and properties of graphdiyne[J]. Acta Chim Sin,2013,71(1):75. doi: 10.6023/A12090728
    [12]
    刘鸣华, 李玉良. 石墨炔: 从合成到应用[J]. 物理化学学报,2018,34(9):959−960. doi: 10.3866/PKU.WHXB201803232

    LIU Ming-hua, LI Yu-liang. Graphite acetylene: from synthesis to application[J]. Acta Phys-Chim Sin,2018,34(9):959−960. doi: 10.3866/PKU.WHXB201803232
    [13]
    SUN Y, BAI H, HUANG Y. Structures, electronic properties and charge carrier mobility of graphdiyne-like BN nanoribbons[J]. RSC Adv,2015,5(12):8965−8973. doi: 10.1039/C4RA10947C
    [14]
    BAI H, ZHU Y, QIAO W, HUANG Y. Structures, stabilities and electronic properties of graphdiyne nanoribbons[J]. RSC Adv,2011,1(5):768. doi: 10.1039/c1ra00481f
    [15]
    WANG Y, WU Q, DENG S, MA R, HUANG X, BI L, YANG Z. Hydrogen storage in Na-decorated H4, 4, 4-graphyne: A density functional theory and monte carlo study[J]. Appl Surf Sci,2019,495:143621. doi: 10.1016/j.apsusc.2019.143621
    [16]
    JIAO Y, DU A, HANKEL M, ZHU Z, RUDOLPH V, SMITH S C. Graphdiyne: A versatile nanomaterial for electronics and hydrogen purification[J]. Chem Commun,2011,47(43):11843. doi: 10.1039/c1cc15129k
    [17]
    GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J Comput Chem,2006,27(15):1787−1799. doi: 10.1002/jcc.20495
    [18]
    JOSEPH A, THOMAS V I, ZYLA G, PADMANABHAN A S, MATHEW S. Theoretical probing of weak anion-cation interactions in certain pyridinium-based ionic liquid ion pairs and the application of molecular electrostatic potential in their ionic crystal density determination: A comparative study using density functional approach[J]. J Phys Chem A,2018,122(1):328−340. doi: 10.1021/acs.jpca.7b09189
    [19]
    RAO C N R, SOOD A K, VOGGU R, SUBRAHMANYAM K S. Some novel attributes of graphene[J]. J Phys Chem Lett,2010,1(2):572−580. doi: 10.1021/jz9004174
    [20]
    LI H, SONG Z, ZHANG X, HUANG Y, LI S, MAO Y, PLOEHN H J, BAO Y, YU M. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation[J]. Science,2013,342(6154):95−98. doi: 10.1126/science.1236686
    [21]
    HOU Y, LI Y, JIANG C, XU Y, WANG M, NIU Q J. Molecular simulation for separation of ethylene and ethane by functionalised graphene membrane[J]. Mol Simulat,2019,45(16):1322−1331. doi: 10.1080/08927022.2019.1632451
    [22]
    李桂霞, 姜永超, 李鹏, 潘维, 李永平, 刘云杰. 菱形石墨炔薄膜He分离特性的密度泛函理论研究[J]. 物理化学学报,2017,33(11):2219−2226. doi: 10.3866/PKU.WHXB201705192

    LI Gui-xia, JIANG Yong-chao, LI Peng, PAN Wei, LI Yong-ping, LIU Yun-jie. Density functional theory study on He separation properties of rhombic graphite acetylene films[J]. Acta Phys-Chim Sin,2017,33(11):2219−2226. doi: 10.3866/PKU.WHXB201705192
    [23]
    MENG Z, ZHANG X, ZHANG Y, GAO H, WANG Y, SHI Q, RAO D, LIU Y, DENG K, LU R. Graphdiyne as a high-efficiency membrane for separating oxygen from harmful gases: A first-principles study[J]. ACS Appl Mater Interfaces,2016,8(41):28166−28170. doi: 10.1021/acsami.6b08662
    [24]
    SAKAI M, SASAKI Y, TOMONO T, SESHIMO M, MATSUKATA M. Olefin selective ag-exchanged x-type zeolite membrane for propylene/propane and ethylene/ethane separation[J]. ACS Appl Mater Interfaces,2019,11(4):4145−4151. doi: 10.1021/acsami.8b20151
    [25]
    GUO Y. The Vlasov-Maxwell-Boltzmann system near maxwellians[J]. Invent Math,2003,153(3):593−630. doi: 10.1007/s00222-003-0301-z
    [26]
    OYAMA S, LEE D, HACARLIOGLU P, SARAF R. Theory of hydrogen permeability in nonporous silica membranes[J]. J Membr Sci,2004,244(1/2):45−53. doi: 10.1016/j.memsci.2004.06.046
    [27]
    ZHU Z. Permeance should be used to characterize the productivity of a polymeric gas separation membrane[J]. J Membr Sci,2006,281(1/2):754−755. doi: 10.1016/j.memsci.2006.04.040
    [28]
    CAPPEL D, TÜLLMANN S, KRAPP A, FRENKING G. Direct estimate of the conjugative and hyperconjugative stabilization in diynes, dienes, and related compounds[J]. Angew Chem Int Ed,2010,44(23):3617−3620.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (449) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return