Volume 49 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
XU Ming-gao, WEN Wu, ZHU Bao-zhong, YANG Jiu-zhong, PAN Yang, SUN Yun-nan. Effects of pressure on the formation of N2O over 3Mn10Fe/Ni catalyst by in-situ synchrotron radiation photoionization mass spectrometry[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 853-860. doi: 10.19906/j.cnki.JFCT.2021042
Citation: XU Ming-gao, WEN Wu, ZHU Bao-zhong, YANG Jiu-zhong, PAN Yang, SUN Yun-nan. Effects of pressure on the formation of N2O over 3Mn10Fe/Ni catalyst by in-situ synchrotron radiation photoionization mass spectrometry[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 853-860. doi: 10.19906/j.cnki.JFCT.2021042

Effects of pressure on the formation of N2O over 3Mn10Fe/Ni catalyst by in-situ synchrotron radiation photoionization mass spectrometry

doi: 10.19906/j.cnki.JFCT.2021042
Funds:  The project was supported by the National Natural Science Foundation of China (52076016)
  • Received Date: 2020-12-18
  • Rev Recd Date: 2021-01-20
  • Available Online: 2021-03-30
  • Publish Date: 2021-06-30
  • In order to study the formation pathway of N2O in NH3-mediated selective catalytic reduction (NH3-SCR) of NOx process and the variation of N2O selectivity affected by pressure, in situ synchrotron radiation photoionization mass spectrometry (SR-PIMS) and flow tube reactor were used to detect the gaseous species in the NH3-SCR reaction over 3Mn10Fe/Ni catalyst. The variations of N2O selectivity, NOx conversion and NH3 conversion were analyzed under different conditions. The results show that the formation of N2O is mainly from non-selective catalytic reaction (NSCR) and adsorbed NH3 oxidation (NSNO). Among them, NSCR plays a dominant role in N2O formation in the temperature range of 100−250 ℃. The contributions of the two formation pathways in the temperature range of 250−400 ℃ are equivalent, and NSNO is the main source in the temperature range of 400−500 ℃. In addition, low pressure reduces the denitration activity of the catalyst at low temperature, but promotes the formation of N2O via NSNO reaction at high temperature.
  • loading
  • [1]
    JOHNSON T, JOSHI A. Review of vehicle engine efficiency and emissions[J]. SAE Int J Engines,2018,11(6):1307−1330. doi: 10.4271/2018-01-0329
    [2]
    TRONCONI E, NOVA I, CIARDELLI C, CHATTERJEE D, WEIBEL M. Redox features in the catalytic mechanism of the “standard” and “fast” NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods[J]. J Catal,2007,245(1):1−10. doi: 10.1016/j.jcat.2006.09.012
    [3]
    LEISTNER K, MIHAI O, WIJAYANTI K, KUMAR A, KAMASAMUDRAM K, CURRIER N W, YEZERETS A, OLSSON L. Comparison of Cu/BEA, Cu/SSZ-13 and Cu/SAPO-34 for ammonia-SCR reactions[J]. Catal Today,2015,258:49−55. doi: 10.1016/j.cattod.2015.04.004
    [4]
    JUNG Y, SHIN Y J, PYO Y D, CHO C P, JANG J, KIM G. NOx and N2O emissions over a Urea-SCR system containing both V2O5-WO3/TiO2 and Cu-zeolite catalysts in a diesel engine[J]. Chem Eng J,2017,326:853−862. doi: 10.1016/j.cej.2017.06.020
    [5]
    GARCÍA-CORTÉS J M, PÉREZ-RAMÍREZ J, ILLÁN-GÓMEZ M J, KAPTEIJN F, MOULIJN J A, SALINAS-MARTı́NEZ DE LECEA C. Comparative study of Pt-based catalysts on different supports in the low-temperature de-NOx-SCR with propene[J]. Appl Catal B: Environ,2001,30(3):399−408.
    [6]
    CHIN Y-H, ALVAREZ W E, RESASCO D E. Sulfated zirconia and tungstated zirconia as effective supports for Pd-based SCR catalysts[J]. Catal Today,2000,62(2):159−165.
    [7]
    SCHLATTER J C, TAYLOR K C. Platinum and palladium addition to supported rhodium catalysts for automotive emission control[J]. J Catal,1977,49(1):42−50. doi: 10.1016/0021-9517(77)90238-X
    [8]
    MORE P M, NGUYEN D L, GRANGER P, DUJARDIN C, DONGARE M K, UMBARKAR S B. Activation by pretreatment of Ag-Au/Al2O3 bimetallic catalyst to improve low temperature HC-SCR of NOx for lean burn engine exhaust[J]. Appl Catal B: Environ,2015,174−175:145−156. doi: 10.1016/j.apcatb.2015.02.035
    [9]
    ZHANG D, YANG R T. N2O formation pathways over zeolite-supported Cu and Fe catalysts in NH3-SCR[J]. Energy Fuels,2018,32(2):2170−2182.
    [10]
    YANG S J, WANG C Z, LI J H, YAN N Q, MA L, CHANG H Z. Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel: Performance, mechanism and kinetic study[J]. Appl Catal B: Environ,2011,110:71−80. doi: 10.1016/j.apcatb.2011.08.027
    [11]
    WU Z B, JIN R B, LIU Y, WANG H Q. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catal Commun,2008,9(13):2217−20. doi: 10.1016/j.catcom.2008.05.001
    [12]
    QI G, YANG R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania[J]. Appl Catal B: Environ,2003,44(3):217−25. doi: 10.1016/S0926-3373(03)00100-0
    [13]
    王继封, 王慧敏, 张亚青, 张秋林, 宁平. WO3的引入对MnOx-Fe2O3催化剂上NH3-SCR反应中N2选择性的促进作用[J]. 燃料化学学报,2019,47(7):814−822. doi: 10.3969/j.issn.0253-2409.2019.07.006

    WANG Ji-feng, WANG Hui-min, ZHANG Ya-qing, ZHANG Qiu-lin, NING Ping. Promotion effect of tungsten addition on N2 selectivity of MnOx-Fe2O3 for NH3-SCR[J]. J Fuel Chem Technol,2019,47(7):814−822. doi: 10.3969/j.issn.0253-2409.2019.07.006
    [14]
    KROECHER O, ELSENER M. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution - I. Catalytic studies[J]. Appl Catal B: Environ,2008,77(3/4):215−27. doi: 10.1016/j.apcatb.2007.04.021
    [15]
    张洪亮, 龙红明, 李家新, 董林. 铁基催化剂用于氨选择性催化还原氮氧化物研究进展[J]. 无机化学学报,2019,35(5):753−768.

    ZHANG Hong-Liang, LONG Hong-Ming, LI Jia-Xin, DONG Lin. Research progress in iron-based catalysts for the selective catalytic reduction of NOx by NH3[J]. Chin J Inorg Chem,2019,35(5):753−768.
    [16]
    YANG S J, XIONG S C, LIAO Y, XIAO X, QI F H, PENG Y, FU Y W, SHAN W P, LI J H. Mechanism of N2O formation during the low-temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel[J]. Environ Sci Technol,2014,48(17):10354−10362. doi: 10.1021/es502585s
    [17]
    YANG S J, FU Y W, LIAO Y, XIONG S C, QU Z, YAN N Q, LI J H. Competition of selective catalytic reduction and non selective catalytic reduction over MnOx/TiO2 for NO removal: the relationship between gaseous NO concentration and N2O selectivity[J]. Catal Sci Technol,2014,4(1):224−232. doi: 10.1039/C3CY00648D
    [18]
    ETTIREDDY P R, ETTIREDDY N, BONINGARI T, PARDEMANN R, SMIRNIOTIS P G. Investigation of the selective catalytic reduction of nitric oxide with ammonia over Mn/TiO2 catalysts through transient isotopic labeling and in situ FT-IR studies[J]. J Catal,2012,292:53−63. doi: 10.1016/j.jcat.2012.04.019
    [19]
    LIU B, YAO D W, WU F, WEI L, LI X W, WANG X L. Experimental investigation on N2O formation during the selective catalytic reduction of NOx with NH3 over Cu-SSZ-13[J]. Ind Eng Chem Res,2019,58(45):20516−20527. doi: 10.1021/acs.iecr.9b03294
    [20]
    顾立军, 谢颖, 刘宝生, 陈小平, 王乐夫. 焙烧温度对CuO/γ-Al2O3和CeO2-CuO/γ-Al2O3催化剂NO还原活性的影响[J]. 燃料化学学报,2004,32(2):235−239. doi: 10.3969/j.issn.0253-2409.2004.02.022

    GU Li-jun, XIE-Ying, LIU Bao-sheng, CHEN Xiao-ping, WANG Le-fu. Effect of calcination temperature on C3H6-SCR of no over CuO/γ-Al2O3 and CeO2-Cuo/γ-Al2O3[J]. J Fuel Chem Technol,2004,32(2):235−239. doi: 10.3969/j.issn.0253-2409.2004.02.022
    [21]
    周皞, 李梦雨, 赵辉爽, 伍士国, 叶必朝, 苏亚欣. 富氧条件下Fe-Mn/Beta选择性催化丙烯还原氮氧化物[J]. 燃料化学学报,2019,47(6):751−761. doi: 10.3969/j.issn.0253-2409.2019.06.013

    ZHOU Hao, LI Meng-yu, ZHAO Hui-shuang, WU Shi-guo, YE Bi-chao, SU Ya-xin. Selective catalytic reduction of nitric oxide with propylene in excess oxygen over Fe-Mn/Beta catalysts[J]. J Fuel Chem Technol,2019,47(6):751−761. doi: 10.3969/j.issn.0253-2409.2019.06.013
    [22]
    周文波, 牛胜利, 王栋, 路春美, 韩奎华, 李英杰, 朱英. 钛改性对γ-Fe2O3选择催化还原脱硝性能强化机制的分子模拟研究[J]. 燃料化学学报,2020,48(10):1224−1235. doi: 10.3969/j.issn.0253-2409.2020.10.009

    ZHOU Wen-bo, NIU Sheng-li, WANG Dong, LU Chun-mei. Promoting effect of Ti in the Ti-modified γ-Fe2O3 catalyst on its performance in the selective catalytic reduction of NO with ammonia, a DFT calculation study[J]. J Fuel Chem Technol,2020,48(10):1224−1235. doi: 10.3969/j.issn.0253-2409.2020.10.009
    [23]
    CHOI C, SUNG Y, CHOI G M, KIM D J. Numerical analysis of NOx reduction for compact design in marine urea-SCR system[J]. Int J Nav Arch Ocean,2015,7(6):1020−1034. doi: 10.1515/ijnaoe-2015-0071
    [24]
    ZHU Y Q, ZHANG R P, ZHOU S, HUANG C A, FENG Y M, SHREKA M, ZHANG C L. Performance optimization of high-pressure SCR System in a marine diesel. Part II: Catalytic reduction and process[J]. Top Catal,2019,62(1):40−48.
    [25]
    UM H S, KIM D, KIM K H. Numerical study on the design of urea decomposition chamber in LP-SCR system[J]. Int J Nav Arch Ocean,2019,11(1):307−313. doi: 10.1016/j.ijnaoe.2018.06.005
    [26]
    訾朝辉. Mn改性泡沫镍负载铁基催化剂低温SCR脱硝性能研究[D]. 马鞍山: 安徽工业大学; 2019.

    ZI, Zhao-hui. Low-temperature SCR DeNOx performance of Mn modified foamed Nickel supported iron-based catalysts[D]. Maanshan: Anhui University of Technology, 2019.
    [27]
    FANG Q L, ZHU B Z, SUN Y L, SONG W Y, XU M G. Effects of Mn, Fe, and Ce doping on the adsorption property of gas molecules and oxidation of SO2 on the NiO (100) surface[J]. Comput Mater Sci,2020,180:109717.
    [28]
    FANG Q L, ZHU B Z, SUN Y L, SONG W Y, XU M G. Effects of alkali metal poisoning and cobalt modification on the NH3 adsorption behavior on the MnxOy/Ni (111) surface: A DFT-D study[J]. Appl Surf Sci,2020,509:144901.
    [29]
    WEN W, YU S S, ZHOU C Q, MA H, ZHOU Z Y, CAO C C, YANG J Z, XU M G, QI F, ZHANG G B, PAN Y. Formation and fate of formaldehyde in methanol-to-hydrocarbon reaction: In situ synchrotron radiation photoionization mass spectrometry study[J]. Angew Chem Int Ed,2020,59(12):4873−4878. doi: 10.1002/anie.201914953
    [30]
    YOU R, YU S S, YANG J Z, PAN Y, HUANG W X. A high-pressure reactor coupled to synchrotron radiation photoionization mass spectrometry[J]. Rev Sci Instrum,2020,91(9):093102. doi: 10.1063/5.0014144
    [31]
    BUTCHER D J. Vacuum ultraviolet radiation for single-photoionization mass spectrometry: A review[J]. Microchem J,1999,62(3):354−362. doi: 10.1006/mchj.1999.1745
    [32]
    HUA L, WU Q H, HOU K Y, CUI H P, CHEN P, WANG W G, LI J H, LI H Y. Single photon ionization and chemical ionization combined ion source based on a vacuum ultraviolet lamp for orthogonal acceleration time-of-flight mass spectrometry[J]. Anal Chem,2011,83(13):5309−5316. doi: 10.1021/ac200742r
    [33]
    CAO F, SU S, XIANG J, WANG P Y, HU S, SUN L S, ZHANG A C. The activity and mechanism study of Fe–Mn–Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Fuel,2015,139:232−239. doi: 10.1016/j.fuel.2014.08.060
    [34]
    ZHANG W, SHI Y, LI C Y, ZHAO Q D, LI X Y. Synthesis of bimetallic MOFs MIL-100(Fe-Mn) as an efficient catalyst for selective catalytic reduction of NOx with NH3[J]. Catal Lett,2016,146(10):1956−1964. doi: 10.1007/s10562-016-1840-4
    [35]
    COOL T A, WANG J, NAKAJIMA K, TAATJES C A, MCLLROY A. Photoionization cross sections for reaction intermediates in Hydrocarbon combustion[J]. Int J Mass Spectrom,2005,247(1):18−27.
    [36]
    KIMURA K, ACHIBA Y, KATSUMATA S, YAMAZAKI T, IWATA S. Photoionic states of organic molecules studied by HeI photoelectron spectroscopy[J]. J Photoch,1981,17(1):159−160.
    [37]
    TANG X F, LI J H, SUN L, HAO J M. Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3[J]. Appl Catal B: Environ,2010,99(1):156−162.
    [38]
    GAO W, LIU Q C, WU C Y, LI H L, LI Y, YANG J, WU G F. Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst[J]. Chem Eng J,2013,220:53−60. doi: 10.1016/j.cej.2013.01.062
    [39]
    ZHU M H, LAI J K, WACHS I E. Formation of N2O greenhouse gas during SCR of NO with NH3 by supported vanadium oxide catalysts[J]. Appl Catal B: Environ,2018,224:836−840. doi: 10.1016/j.apcatb.2017.11.029
    [40]
    WANG D H, YAO Q, HUI S, NIU Y Q. Source of N and O in N2O formation during selective catalytic reduction of NO with NH3 over MnOx/TiO2[J]. Fuel,2019,251:23−29. doi: 10.1016/j.fuel.2019.04.035
    [41]
    SUÁREZ S, JUNG S M, AVILA P, GRANGE P, BLANCO J. Influence of NH3 and NO oxidation on the SCR reaction mechanism on copper/nickel and vanadium oxide catalysts supported on alumina and titania[J]. Catal Today,2002,75(1):331−338.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (728) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return