Volume 49 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
SU Yin-jiao, TENG Yang, ZHANG Kai, LI Li-feng, WANG Peng-cheng, LI Zhen. Migration and transformation of mercury in WFGD slurry from a coal-fired power unit and the effect of additive on mercury stability in gypsum[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 1022-1033. doi: 10.19906/j.cnki.JFCT.2021055
Citation: SU Yin-jiao, TENG Yang, ZHANG Kai, LI Li-feng, WANG Peng-cheng, LI Zhen. Migration and transformation of mercury in WFGD slurry from a coal-fired power unit and the effect of additive on mercury stability in gypsum[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 1022-1033. doi: 10.19906/j.cnki.JFCT.2021055

Migration and transformation of mercury in WFGD slurry from a coal-fired power unit and the effect of additive on mercury stability in gypsum

doi: 10.19906/j.cnki.JFCT.2021055
Funds:  The project was supported by the National Key R&D Program of China (2020YFB0606201), the National Natural Science Foundation of China (U1910215) and the Fundamental Research Funds for the Central Universities (2019QN020,2019QN019)
More Information
  • Corresponding author: E-mail: kzhang@ncepu.edu.cn
  • Received Date: 2021-03-24
  • Rev Recd Date: 2021-05-07
  • Available Online: 2021-06-01
  • Publish Date: 2021-07-15
  • Slurry sample was collected from a 300 MW ultra-low emissions coal-fired power unit. The migration and transformation behaviors of mercury in the sample were investigated, and the effect of additive on the stability of mercury in solid gypsum was explored by considering the thermal release behavior and environmental risk. The results show that gaseous Hg0 is increased with the increase of slurry temperature, while Hg is increased in both gas phase and gypsum with the increase of slurry pH. The concentration of Cl or $ {\rm{SO}}^{2-}_{4} $ increases in slurry could inhibit the reduction of Hg2+ to Hg0 and increase Hg proportion in gypsum. However, the increase of $ {\rm{SO}}^{2-}_{3} $ concentration is beneficial to the Hg enriched in gypsum and a part of Hg2+ reduced to Hg0. When Na2S, EDTA-2Na or DTCR-4 is added, Hg2+ is turned into HgS, Hg(EDTA)2 or [ −Hg-DTCR] −n, respectively among which more than 75% Hg is transferred to gypsum and Hg2+ is inhibited to reduce into Hg0. The thermal stability of Hg in gypsum can be ordered as Gypsum + EDTA-2Na < Gypsum + DTCR-4 < Gypsum + Na2S < Gypsum due to the stability difference among Hg(EDTA)2, [ −Hg-DTCR] −n and HgS(black). By using TCLP, SPLP and MEP, the chemical stability of Hg in gypsum can be ordered as Gypsum < Gypsum + Na2S < Gypsum + EDTA-2Na < Gypsum + DTCR-4 due to the concentration difference of water soluble mercury, acid soluble mercury and oxidizable mercury among gypsums.
  • loading
  • [1]
    Minamata Convention on Mercury[S]. United Nations Environment Programme, 2017.
    [2]
    ZHAO W M, GENG X Z, LU J C, DUAN Y F, LIU S, HU P, XU Y F, HUANG Y J, TAO J, GU X B. Mercury removal performance of brominated biomass activated carbon injection in simulated and coal-fired flue gas[J]. Fuel,2021,285:119131. doi: 10.1016/j.fuel.2020.119131
    [3]
    辛凤, 魏书洲, 张军峰, 马斯鸣, 赵永椿, 张军营. 燃煤烟气非碳基吸附剂脱汞研究进展[J]. 燃料化学学报,2020,48(12):1409−1420. doi: 10.3969/j.issn.0253-2409.2020.12.002

    XIN Feng, WEI Shu-zhou, ZHANG Jun-feng, MA Si-ming, ZHAO Yong-chun, ZHANG Jun-yin. Research progress on the removal of mercury from coal-fired flue gas by using non-carbon-based adsorbents[J]. J Fuel Chem and Technol,2020,48(12):1409−1420. doi: 10.3969/j.issn.0253-2409.2020.12.002
    [4]
    岳光溪, 周大力, 田文龙, 麻林巍, 刘青, 章景皓, 王志轩, 龙辉, 廖海燕. 中国煤炭清洁燃烧技术路线图的初步探讨[J]. 中国工程科学,2018,20(3):74−79.

    YUE Guang-xi, ZHOU Da-li, TIAN Wen-long, MA Lin-wei, LIU Qin, ZHANG Jin-hao, WANG Zhi-xuan, LONG Hui, LIAO Hai-yan. Preliminary discussion on the technology roadmap of clean coal combustion in China[J]. Strategic Study CAE,2018,20(3):74−79.
    [5]
    李晓航, 刘芸, 苏银皎, 滕阳, 关彦军, 张锴. 煤粉炉和循环流化床锅炉飞灰特性对其汞吸附能力的影响[J]. 化工学报,2019,70(3):1075−1082.

    LI Xiao-hang, LIU Xuan, SU Yin-jiao, TENG Yang, GUAN Yan-jun, ZHANG Kai. Difference of fly ash characteristics from PC and CFB boilers and its effect on mercury adsorption capability[J]. J Chem Ind Eng,2019,70(3):1075−1082.
    [6]
    OTTEN B V, BUITRAGO P A, SENIOR C L, SILCOX G D. Gas-phase oxidation of mercury by bromine and chlorine in flue gas[J]. Energy Fuels,2011,25(8):3530−3536.
    [7]
    JENNIFER W, ERIK R, YING S C, LIM D H, NEGRIRA A S, KIRCHOFER A, FENG F, LEE K. Mercury adsorption and oxidation in coal combustion and gasification processes[J]. Int J Coal Geol,2012,90−91:4−20. doi: 10.1016/j.coal.2011.12.003
    [8]
    HAYNES W M E. CRC Handbook of Chemistry and Physics (Internet Version 2016) (96th)[M]. Boca Raton: CRC Press/Taylor and Francis, 2016.
    [9]
    WU C L, CAO Y, DONG Z B, CHENG C M, LI H X, PAN W P. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler[J]. J Environ Sci,2010,22(2):277−282. doi: 10.1016/S1001-0742(09)60105-4
    [10]
    SENIOR C L, HELBLE J J, SAROFIM A F. Emissions of mercury, trace elements, and fine particles from stationary combustion sources[J]. Fuel Process Technol,2002,65−66:263−288.
    [11]
    NARUHITO O, CARLOS E R, HIROFUMI K, WU S, SANDHYA E. Study of elemental mercury re-emission in a simulated wet scrubber[J]. Fuel,2012,91(1):93−101. doi: 10.1016/j.fuel.2011.06.018
    [12]
    毛琳, 张志越, 孙佳兴, 祁东旭, 陈逸鹏, 杨宏旻. 添加剂对抑制模拟脱硫浆液中汞再释放的影响[J]. 燃料化学学报,2018,46(10):1265−1271. doi: 10.3969/j.issn.0253-2409.2018.10.015

    MAO Lin, ZHANG Zhi-yue, SUN Jia-xing, QI Dong-xu, CHEN Yi-peng, YANG Hong-hao. Effects of additives on stabilization and inhibition of mercury re-emission in simulated wet gas desulphurization slurry[J]. J Fuel Chem Technol,2018,46(10):1265−1271. doi: 10.3969/j.issn.0253-2409.2018.10.015
    [13]
    BARNA H, MELANIE H, GUNTER S. Impact of additives for enhanced sulfur dioxide removal on re-emissions of mercury in wet flue gas desulfurization[J]. Appl Energy,2014,114:485−491. doi: 10.1016/j.apenergy.2013.09.059
    [14]
    蒋建国, 王伟, 甄晓月, 杜竹玮. 高分子螯合剂捕集重金属Pb2+的机理研究[J]. 环境科学学报,1997,18(2):31−31+95.

    JAING Jian-guo, WANG Wei, ZHEN Xiao-yue, DU Zhu-wei. Study on mechanism of polymer chelating agent for trapping heavy metal Pb2+[J]. Acta Sci Circum,1997,18(2):31−31+95.
    [15]
    KRZYZYNSKA R, HUTSON N D, ZHAO Y, SZELIGA Z, REGUCKI P. Mercury removal and its fate in oxidant enhanced wet flue gas desulphurization slurry[J]. Fuel,2018,211:876−882. doi: 10.1016/j.fuel.2017.10.004
    [16]
    LIU S T, GAO Y, LIU Y C. Investigation on mercury reemission from Limestone-Gypsum wet flue gas desulfurization slurry[J]. The Scientific World J,2014,(3/4):581724.
    [17]
    SCHUETZE J, KUNTH D, WEISSBACH S, KOESER H. Mercury vapor pressure of flue gas desulfurization scrubber suspensions: effects of pH level, gypsum, and iron[J]. Environ Sci Technol,2012,46(5):3008−3013. doi: 10.1021/es203605h
    [18]
    OCHOA-GONZÁLEZ R, DIAZ-SOMOANO M, MARTINEZ-TARAZONA M R. Control of Hg0 re-emission from gypsum slurries by means of additives in typical wet scrubber conditions[J]. Fuel,2013,105:112−118. doi: 10.1016/j.fuel.2012.05.044
    [19]
    潘杰, 晏乃强, 瞿赞, 徐浩淼, 马永鹏, 陈万苗, 黄文君, 赵松建. 燃煤电厂脱硫石膏中汞的浸出特性研究[J]. 环境科学与技术,2015,38(7):88−92.

    PAN Jie, YAN Nai-qiang, QU Zan, XU Hao-miao, MA Yong-peng, CHEN Miao-wan, HUANG Wen-jun, ZHAO Song-jian. Leaching characteristics of mercury in WFGD gypsum[J]. Environ Sci Technol,2015,38(7):88−92.
    [20]
    CUI L M, WANG Y G, GAO L, HU L H, YAN L G, WEI Q, DU B. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property[J]. Chem Eng J,2015,281:1−10. doi: 10.1016/j.cej.2015.06.043
    [21]
    SUN J, CHEN H, QI D, WU H, ZHOU C, YANG H. Enhanced immobilization of mercury (II) from desulphurization wastewater by EDTA functionalized graphene oxide nanoparticles[J]. Environ Technol,2020,41(11):1366−1379.
    [22]
    郭敏辉, 于洁, 官宝红. 电石渣脱硫废水中超标重金属的去除[J]. 水处理技术,2014,40(10):28−31.

    GUO Min-hui, YU Jie, GUAN Bao-hong. Heavy metals removal from the carbide slag desulfurization wastewater[J]. Technol Water Treatment,2014,40(10):28−31.
    [23]
    TANG T M, XU J, LU R J, WO J J. Enhanced Hg2+ removal and Hg0 re-emission control from wet fuel gas desulfurization liquors with additives[J]. Fuel,2010,89(12):3613−3617. doi: 10.1016/j.fuel.2010.07.045
    [24]
    LE I R, HUANG C H, JEN Y S, YUAN C H, CHEN W H. Adsorption of vapor-phase elemental mercury (Hg0) and mercury chloride (HgCl2) with innovative composite activated carbons impregnated with Na2S and S0 in different sequences[J]. Chem Eng J,2013,229:469−476. doi: 10.1016/j.cej.2013.06.059
    [25]
    付康丽, 姚明宇, 钦传光, 程广文, 聂剑平. 巯基聚苯乙烯树脂对FGD系统中Hg2+的脱除性能[J]. 化工学报,2016,67(6):2598−2604.

    FU Kang-li, YAO Ming-yu, QIN Chuan-guang, CHENG Wen-guang, NIE Jian-ping. Hg2+ removal from FGD system by thiol polystyrene resin[J]. J Chem Ind Eng,2016,67(6):2598−2604.
    [26]
    郝莹. 燃煤副产物脱硫石膏中重金属富集的地球化学特征及其环境风险[D]. 上海: 上海大学, 2017.

    HAO Yin. Geochemical characteristics and potential risks of heavy metals in desulfurization gypsum from coal-fired power plants[D]. Shanghai: Shanghai University, 2017.
    [27]
    HJ 2053—2018. 燃煤电厂超低排放烟气治理工程技术规范[S].

    HJ 2053—2018. Technical specifications for flue gas ultra-low emission engineering of coal-fired power plant[S].
    [28]
    Method 29, Determination of Metals Emissions from Stationary Sources[S].
    [29]
    苏银皎, 刘轩, 李丽锋, 李晓航, 姜平, 滕阳, 张锴. 三类煤阶煤中汞的赋存形态分布特征[J]. 化工学报,2019,70(4):1559−1566.

    SU Yin-jiao, LIU Xuan, LI Li-feng, LI Xiao-hang, JIANG Ping, TENG Yang, ZHANG Kai. The distribution characteristics of mercury speciation in coals with three different ranks[J]. J Chem Ind Eng,2019,70(4):1559−1566.
    [30]
    RUMAVOR M, DIAZ S M, LOPEZ A M A, GONZALEZ R O, TARAZONA M R M. Temperature programmed desorption as a tool for the identification of mercury fate in wet-desulphurization systems[J]. Fuel,2015,148:98−103. doi: 10.1016/j.fuel.2015.01.101
    [31]
    MARCZAK M, FAUSTYNA W, BURMISTRZ P, STRUGAA A, LECH S. Investigation of subbituminous coal and lignite combustion processes in terms of mercury and arsenic removal[J]. Fuel,2019,251:572−579. doi: 10.1016/j.fuel.2019.04.082
    [32]
    YUDOVICH Y E, KETRIS M P. Mercury in coal: A review. part 1. geochemistry[J]. Int J Coal Geol,2005,62(3):107−134. doi: 10.1016/j.coal.2004.11.002
    [33]
    管一明. 燃煤电厂烟气脱硫废水处理[J]. 电力环境保护,1998,14(1):38−44.

    GUAN Yi-ming. Treatment of flue gas desulfurization wastewater from coal-fired power plants[J]. Electric Power Technol Environ Protect,1998,14(1):38−44.
    [34]
    禾志强, 田雁冰, 赵全中, 沈建军. 火力发电厂烟气脱硫废水处理工程实例[J]. 工业用水与废水,2008,39(5):83−85. doi: 10.3969/j.issn.1009-2455.2008.05.023

    HE Zhi-qiang, TIAN Yan-bing, ZHAO Quan-zhong, SHEN Jian-jun. Examples of flue gas desulfurization wastewater treatment project in thermal power plant[J]. Indust Water Wastewater,2008,39(5):83−85. doi: 10.3969/j.issn.1009-2455.2008.05.023
    [35]
    吕松力, 斯琴, 李晓楠, 武鸿鹏. 燃煤电厂脱硫废水处理探讨[J]. 电站系统工程,2017,33(3):56−58.

    LV Song-li, SI Qin, LI Xiao-nan, WU Hong-peng. Discussion of FGD waste water treatment method on coal-fired power plant[J]. Power Sys Eng,2017,33(3):56−58.
    [36]
    LIU Y, WANG Y J, WU Z B, ZHOU S Y, WANG H Q. A mechanism study of chloride and sulfate effects on Hg2+ reduction in sulfite solution[J]. Fuel,2011,90(7):2501−2507. doi: 10.1016/j.fuel.2011.02.036
    [37]
    CHANG L, ZHAO Y C, ZHANG Y, YU X H, LI Z H, GONG B G, LIU H, WEI S Z, WU H, ZHANG J Y. Mercury species and potential leaching in sludge from coal-fired power plants[J]. J Hazard Mater,2021,403:123927. doi: 10.1016/j.jhazmat.2020.123927
    [38]
    ZHANG Y S, ZHAO L L, GUO R T, WANG J W, CAO Y, ORNDORFF W, PAN W P. Influences of NO on mercury adsorption characteristics for HBr modified fly ash[J]. Int J Coal Geol,2017,170:77−83. doi: 10.1016/j.coal.2016.10.002
    [39]
    HAO Y, WU S M, PAN Y, LI Q, ZHOU J Z, XU Y B, QIAN G R. Characterization and leaching toxicities of mercury in flue gas desulfurization gypsum from coal-fired power plants in China[J]. Fuel,2016,177:157−163.
    [40]
    GB 5085.3—2007. 危险废物鉴别标准-浸出毒性鉴别[S].

    GB 5085.3—2007. Identification standards for hazardous wastes-Identification for extraction toxicity[S].
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (377) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return