Volume 49 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
WANG Wen-jin, XU Ying, ZHU Yu-ting, MA Long-long. Selective depolymerization β−O−4 linkage of lignin over Pd/C and NaOH[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1876-1882. doi: 10.19906/j.cnki.JFCT.2021056
Citation: WANG Wen-jin, XU Ying, ZHU Yu-ting, MA Long-long. Selective depolymerization β−O−4 linkage of lignin over Pd/C and NaOH[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1876-1882. doi: 10.19906/j.cnki.JFCT.2021056

Selective depolymerization β−O−4 linkage of lignin over Pd/C and NaOH

doi: 10.19906/j.cnki.JFCT.2021056
Funds:  The project was supported by the National Natural Science Foundation of China and the National Research Council of Thailand’s "Renewable Energy" Field Cooperative Research Project (5181101221), the Chinese Academy of Sciences Strategic Leading Science and Technology Project (A) (XDA 21060102) and the Local Innovative Scientific Research Team of the "Pearl River Talent Program" of Guangdong Province Project Grant (2017BT01N092)
  • Received Date: 2021-03-31
  • Rev Recd Date: 2021-05-06
  • Available Online: 2021-06-16
  • Publish Date: 2021-12-29
  • β–O–4 is the most abundant linkage in the lignin structure. It is of great significance to convert lignin into monophenols by breaking the β−O−4 linkage. Therefore, β−O−4 dimer model compound was used as raw materials in this paper. The effects of metal catalysts, temperature, time and hydrogen pressure on the conversion of dimer and yield of monophenols were investigated by GC-MS, GC-FID, HSQC NMR characterization methods. The results show that NaOH and carbon-supported metal catalysts have a synergistic effect which can enhance the breakage of β−O−4 linkage, and the best promotion effect is obtained over Pd/C and NaOH with the monomer yield increases from 44.1% to 83.4%. NaOH and Pd/C can inhibit the removal of Cα−OH of the dimer and enhance the breakage of β−O−4 linkage effectively, leading to the increment in monomers. The NaOH and Pd/C catalytic system also shows excellent performance to the breakage of α−O−4. Under the best conditions, alkali lignin is converted into monophenols over NaOH and Pd/C with the yield of 37.5%, and the selectivity of benzyl alcohol is as high as 48%.
  • loading
  • [1]
    PANDEY M P, KIM C S. Lignin depolymerization and conversion: A review of thermochemical methods[J]. Chem Eng Technol,2011,34(1):29−41. doi: 10.1002/ceat.201000270
    [2]
    CHEN X, GUAN W X, TSANG C W, HU H Q, LIANG C H. Lignin valorizations with Ni catalysts for renewable chemicals and fuels productions[J]. Catalysts,2019,9(6):488. doi: 10.3390/catal9060488
    [3]
    AZADI P, INDERWILDI O R, FARNOOD R, KING D A. Liquid fuels, hydrogen and chemicals from lignin: A critical review[J]. Renewable Sustainable Energy Rev,2013,21:506−523. doi: 10.1016/j.rser.2012.12.022
    [4]
    XU C, ARANCON R, LABIDI J, LUQUE R. Lignin depolymerisation strategies: Towards valuable chemicals and fuels[J]. Chem Soc Rev,2014,43(22):7485−7500. doi: 10.1039/C4CS00235K
    [5]
    UPTON B M, KASKO A M. Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective[J]. Chem Rev,2016,116(4):2275−2306. doi: 10.1021/acs.chemrev.5b00345
    [6]
    WATKINS D, NURUDDIN M, HOSUR M, TCHERBI-NARTEH A, JEELANI S. Extraction and characterization of lignin from different biomass resources[J]. J Mater Res Technol,2015,4(1):26−32. doi: 10.1016/j.jmrt.2014.10.009
    [7]
    JIANG Z, HU C. Selective extraction and conversion of lignin in actual biomass to monophenols: A review[J]. J Energy Chem,2016,25(6):947−956. doi: 10.1016/j.jechem.2016.10.008
    [8]
    HAGGLUND E, BJORKMAN C B. Lignin hydrochloride[J]. Biochemische Zeitschrift,1924,147:74−89.
    [9]
    ABU-OMAR M M, BARTA K, BECKHAM G T, LUTERBACHER J S, RALPH J, RINALDI R, ROMÁN-LESHKOV Y, SAMEC J S M, SELS B F, WANG F. Guidelines for performing lignin-first biorefining[J]. Energy Environ Sci,2021,14(1):262−292. doi: 10.1039/D0EE02870C
    [10]
    SJÖSTRÖM E. Introduction to carbohydrate chemistry[C]//Wood Chemistry. 2nd ed. San Diego: Academic Press, 1993.21-50.
    [11]
    GIERER J. Chemistry of delignification. I. General concept and reactions during pulping[J]. Wood Sci Technol,1985,19(4):289−312.
    [12]
    GIERER J. The chemistry of delignification. A general concept[J]. Holzforschung,1982,36(1):43−51. doi: 10.1515/hfsg.1982.36.1.43
    [13]
    RAMIREZ R S, HOLTZAPPLE M, PIAMONTE N. Fundamentals of biomass pretreatment at high pH[C]//Wyman C. E. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals. Chichester: John Wiley & Sons, Ltd., 2013: 145−167.
    [14]
    VAN DEN BOSCH S, SCHUTYSER W, VANHOLME R, DRIESSEN T, KOELEWIJN S F, RENDERS T, DE MEESTER B, HUIJGEN W J J, DEHAEN W, COURTIN C M, LAGRAIN B, BOERJAN W, SELS B F. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps[J]. Energy Environ Sci,2015,8(6):1748−1763. doi: 10.1039/C5EE00204D
    [15]
    HU J, ZHANG S, XIAO R, JIANG X, WANG Y, SUN Y, LU P. Catalytic transfer hydrogenolysis of lignin into monophenols over platinum-rhenium supported on titanium dioxide using isopropanol as in-situ hydrogen source[J]. Bioresour Technol,2019,279:228−233. doi: 10.1016/j.biortech.2019.01.132
    [16]
    CHEN P, ZHANG Q, SHU R, XU Y, MA L, WANG T. Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts[J]. Bioresour Technol,2017,226:125−131. doi: 10.1016/j.biortech.2016.12.030
    [17]
    OPRIS C, COJOCARU B, GHEORGHE N, TUDORACHE M, COMAN S M, PARVULESCU V I, DURAKI B, KRUMEICH F, VAN BOKHOVEN J A. Lignin fragmentation over magnetically recyclable composite Co@Nb2O5@Fe3O4 catalysts[J]. J Catal,2016,339:209−227. doi: 10.1016/j.jcat.2016.04.002
    [18]
    WANMOLEE W, BELTRAMINI J N, ATANDA L, BARTLEY J P, LAOSIRIPOJANA N, DOHERTY W O S. Effect of Hcook/Ethanol on Fe/Husy, Ni/HUSY, and Ni-Fe/Husy catalysts on lignin depolymerization to benzyl alcohols and bioaromatics[J]. ACS Omega,2019,4(16):16980−16993. doi: 10.1021/acsomega.9b02413
    [19]
    LIMARTA S O, HA J-M, PARK Y-K, LEE H, SUH D J, JAE J. Efficient depolymerization of lignin in supercritical ethanol by a combination of metal and base catalysts[J]. J Ind Eng Chem,2018,57:45−54. doi: 10.1016/j.jiec.2017.08.006
    [20]
    KONNERTH H, ZHANG J, MA D, PRECHTL M H G, YAN N. Base promoted hydrogenolysis of lignin model compounds and organosolv lignin over metal catalysts in water[J]. Chem Eng Sci,2015,123:155−163. doi: 10.1016/j.ces.2014.10.045
    [21]
    SHU R, XU Y, MA L, ZHANG Q, WANG C, CHEN Y. Controllable production of guaiacols and phenols from lignin depolymerization using Pd/C catalyst cooperated with metal chloride[J]. Chem Eng J,2018,338:457−464. doi: 10.1016/j.cej.2018.01.002
    [22]
    STURGEON M R, KIM S, LAWRENCE K, PATON R S, CHMELY S C, NIMLOS M, FOUST T D, BECKHAM G T. A mechanistic investigation of acid-catalyzed cleavage of aryl-ether linkages: Implications for lignin depolymerization in acidic environments[J]. ACS Sustainable Chem Eng,2014,2(3):472−485. doi: 10.1021/sc400384w
    [23]
    LI H L, SONG G. Ru-catalyzed hydrogenolysis of lignin: Base-dependent tunability of monomeric phenols and mechanistic study[J]. ACS Catal,2019,9(5):4054−4064. doi: 10.1021/acscatal.9b00556
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (370) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return